[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Siamese Adaptive Template Update Network for Visual Tracking

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14087))

Included in the following conference series:

  • 1229 Accesses

Abstract

Siamese-based trackers have achieved strong performance in single-target tracking. Effective feature response maps are fundamental to improving tracker performance when dealing with challenging scenes. However, most Siamese-based trackers have constant template features when tracking. This approach greatly limits the effectiveness of the tracker in complex scenes. To solve this issue, we proposed a novel tracking framework, termed as SiamATU, which adaptively performs update of template features. This update method uses a multi-stage training strategy during the training process so that the template update is gradually optimized. In addition, we designed a feature enhancement module to enhance the discriminative and robustness of the features, which focuses on the rich correlation between the template image and the search image, and then makes the model more focused on the tracking object to achieve more precise tracking. Through extensive experiments on GOT-10K, UAV123, OTB100, and other datasets, SiamATU has a leading performance, which runs at 26.23FPS, exceeding the real-time level of 25FPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) Computer Vision – ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8–10 and 15–16, 2016, Proceedings, Part II, pp. 850–865. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  2. Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: Siamcar: Siamese fully convolutional classification and regression for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6269–6277 (2020)

    Google Scholar 

  3. Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: SiamFC++: towards robust and accurate visual tracking with target estimation guidelines. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 12549–12556 (2020)

    Google Scholar 

  4. Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: object-aware anchor-free tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol. 12366, pp. 771–787 Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_46

  5. Zhang, L., Gonzalez-Garcia, A., Weijer, J.V.D., Danelljan, M., Khan, F.S.: Learning the model update for Siamese trackers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4010–4019 (2019)

    Google Scholar 

  6. Huang, L., Zhao, X., Huang, K.: Got-10k: a large high diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1562–1577 (2019)

    Article  Google Scholar 

  7. Li, S., Yeung, D.-Y.: Visual object tracking for unmanned aerial vehicles: a benchmark and new motion models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  8. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27

    Chapter  Google Scholar 

  9. Wu, Y., Lim, J., Yang, M.-H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(09), 1834–1848 (2015)

    Article  Google Scholar 

  10. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1430–1438 (2016)

    Google Scholar 

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  12. Wang, Q., Teng, Z., Xing, J., Gao, J., Hu, W., Maybank, S.: Learning attentions: residual attentional Siamese network for high performance online visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4854–4863 (2018)

    Google Scholar 

  13. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  14. Zhang, Z., Peng, H.: Deeper and wider Siamese networks for real-time visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4591–4600 (2019)

    Google Scholar 

  15. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: Siamrpn++: evolution of Siamese visual tracking with very deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4282–4291 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under (grant No. 62273293), Shandong Provincial Natural Science Foundation, China under Grant ZR2022LZH002. And Innovation Capability Improvement Plan Project of Hebei Province (No. 22567626H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejun Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, J., Ren, K., Xiang, Y., Tang, D. (2023). Siamese Adaptive Template Update Network for Visual Tracking. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14087. Springer, Singapore. https://doi.org/10.1007/978-981-99-4742-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4742-3_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4741-6

  • Online ISBN: 978-981-99-4742-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics