[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Security on Top of Security: Detecting Malicious Firewall Policy Changes via K-Means Clustering

  • Conference paper
  • First Online:
Machine Learning for Cyber Security (ML4CS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14541))

Included in the following conference series:

  • 242 Accesses

Abstract

As a company grows, so does its infrastructure—especially its information technology (IT) infrastructure. Maintaining a transparent and manageable firewall policy during this period of rapid upscaling is nigh impossible. The situation is further complicated when multiple people—or even multiple teams—deploy and maintain these firewall policies. Different people often tackle a problem differently, developing different solutions, which, in turn, lead to different firewall policies. Inconsistencies in firewall policies are particularly problematic when it comes to updating, patching, and testing firewalls. Motivated by these issues, in this work, we collaborate with a telecommunications company and construct a web application that leverages machine learning to detect anomalies in firewall policies. The machine learning models can use firewall logs from internal firewalls, and, therefore, can learn the intricacies of traffic on a given network. The models can then predict the expected output from the network logs; anomalies can be identified if the expected values differ from the predicted values. In our evaluation, we collect data from the participating telecommunications company, implement our solution using the k-means clustering algorithm, and evaluate its performance against the collected data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 69.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://fortimanager.forticloud.com/.

  2. 2.

    https://www.office.com/sharepoint.

  3. 3.

    https://www.splunk.com.

References

  1. WEKA: The Data Platform for Cloud & AI. https://www.weka.io/

  2. Abassi, R., Fatmi, S.G.E.: Towards an automated firewall security policies validation process. Crisis 267–272, 2008 (2008)

    Google Scholar 

  3. Andalib, A., Babamir, S.M.: Anomaly detection of policies in distributed firewalls using data log analysis. J. Supercomput. 79(17), 19473–19514 (2023)

    Article  Google Scholar 

  4. Al-Shaer, E., Hamed, H.H.: Discovery of policy anomalies in distributed firewalls. INFOCOM 2605–2616, 2004 (2004)

    Google Scholar 

  5. Al-Shaer, E., Hamed, H.H., Boutaba, R., Hasan, M.: Conflict classification and analysis of distributed firewall policies. IEEE J. Sel. Areas Commun. 23(10), 2069–2084 (2005)

    Article  Google Scholar 

  6. Abedin, M., Nessa, S., Khan, L., Thuraisingham, B.: Detection and resolution of anomalies in firewall policy rules. DBSec 15–29, 2006 (2006)

    Google Scholar 

  7. Adao, P., Focardi, R., Guttman, J.D., Luccio, F.L.: Localizing firewall security policies. In: Proceedings of CSF, pp. 194–209 (2016)

    Google Scholar 

  8. Bringhenti, D., Marchetto, G., Sisto, R., Valenza, F., Yusupov, J.: Automated firewall configuration in virtual networks. IEEE Trans. Dependable Secur. Comput. 20(2), 1559–1576 (2023)

    Article  Google Scholar 

  9. Lampe, B., Meng, W.: A survey of deep learning-based intrusion detection in automotive applications. Expert Syst. Appl. 221(119771), 1–23 (2023)

    Google Scholar 

  10. Jin, Z., Liang, Z., Wang, Y., Meng, W.: Mobile network traffic pattern classification with incomplete a priori information. Comput. Commun. 166, 262–270 (2021)

    Article  Google Scholar 

  11. Calugar, A.N., Meng, W., Zhang, H.: Towards artificial neural network based intrusion detection with enhanced hyperparameter tuning. In: Proceedings of IEEE GLOBECOM, pp. 2627–2632 (2022)

    Google Scholar 

  12. Ceragioli, L., Degano, P., Galletta, L.: Can my firewall system enforce this policy? Comput. Secur. 117, 102683 (2022)

    Article  Google Scholar 

  13. Chen, F., Liu, A.X., Hwang, J., Xie, T.: First step towards automatic correction of firewall policy faults. ACM Trans. Auton. Adapt. Syst. 7(2), 27:1-27:24 (2012)

    Article  Google Scholar 

  14. Cuppens, N., Zerkane, S., Li, Y., Espes, D., Parc, P.L., Cuppens, F.: Firewall policies provisioning through SDN in the cloud. In: Proceedings of DBSec, pp. 293–310 (2017)

    Google Scholar 

  15. Gao, S., Li, Z., Yao, Y., Xiao, B., Guo, S., Yang, Y.: Software-defined firewall: enabling malware traffic detection and programmable security control. In: Proceedings of AsiaCCS, pp. 413–424 (2018)

    Google Scholar 

  16. Kovacevic, I., Stengl, B., Gros, S.: Systematic review of automatic translation of high-level security policy into firewall rules. In: Proceedings of MIPRO, pp. 1063–1068 (2022)

    Google Scholar 

  17. Klement, F., Pohls, H.C., Katzenbeisser, S.: Man-in-the-OBD: a modular, protocol agnostic firewall for automotive dongles to enhance privacy and security. In: Proceedings of ADIoT, pp. 143–164 (2022)

    Google Scholar 

  18. Li, W., Meng, W., Kwok, L.F.: Surveying trust-based collaborative intrusion detection: state-of-the-art, challenges and future directions. IEEE Commun. Surv. Tutor. 24(1), 280–305 (2022)

    Article  Google Scholar 

  19. Kilincer, I.F., Ertam, F., Sengur, A.: Machine learning methods for cyber security intrusion detection: datasets and comparative study. Comput. Netw. 188, 107840 (2021)

    Article  Google Scholar 

  20. Lorenz, C., Schnor, B.: Policy anomaly detection for distributed IPv6 firewalls. In: Proceedings of SECRYPT, pp. 210–219 (2015)

    Google Scholar 

  21. Lorenz, C., Schnor, B.: Policy anomaly detection for distributed IPv6 firewalls. SECRYPT 210–219, 2015 (2015)

    Google Scholar 

  22. Macfarlane, R., Buchanan, W.J., Ekonomou, E., Uthmani, O., Fan, L., Lo, O.: Formal security policy implementations in network firewalls. Comput. Secur. 31(2), 253–270 (2012)

    Article  Google Scholar 

  23. Matsumoto, S., Bouhoula, A.: Automatic verification of firewall configuration with respect to security policy requirements. In: Proceedings of CISIS, pp. 123–130 (2008)

    Google Scholar 

  24. Meng, W., Li, W., Kwok, L.F.: EFM: enhancing the performance of signature-based network intrusion detection systems using enhanced filter mechanism. Comput. Secur. 43, 189–204 (2014)

    Article  Google Scholar 

  25. Ferraresi, S., Pesic, S., Trazza, L., Baiocchi, A.: Automatic conflict analysis and resolution of traffic filtering policy for firewall and security gateway. ICC 1304–1310, 2007 (2007)

    Google Scholar 

  26. Hu, H., Ahn, G.J., Kulkarni, K.: Detecting and resolving firewall policy anomalies. IEEE Trans. Dependable Secur. Comput. 9(3), 318–331 (2012)

    Article  Google Scholar 

  27. Neville, U., Foley, S.N.: Reasoning about firewall policies through refinement and composition. J. Comput. Secur. 26(2), 207–254 (2018)

    Article  Google Scholar 

  28. Ucar, E., Ozhan, E.: The analysis of firewall policy through machine learning and data mining. Wirel. Pers. Commun. 96(2), 2891–2909 (2017)

    Article  Google Scholar 

  29. Togay, C., Kasif, A., Catal, C., Tekinerdogan, B.: A firewall policy anomaly detection framework for reliable network security. IEEE Trans. Reliab. 71(1), 339–347 (2022)

    Article  Google Scholar 

  30. Xu, Y., et al.: Intrusion detection based on fusing deep neural networks and transfer learning. In: Proceedings of IFTC, pp. 212–223 (2019)

    Google Scholar 

  31. Sun, X., Meng, W., Chiu, W.Y., Lampe, B.: TDL-IDS: towards a transfer deep learning based intrusion detection system. In: The 2022 IEEE Global Communications Conference (IEEE GLOBECOM 2022), pp. 2603–2608. IEEE (2022)

    Google Scholar 

  32. Zhang, J., Feng, H., Liu, B., Zhao, D.: Survey of technology in network security situation awareness. Sensors 23(5), 2608 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the participating company for supporting the data collection and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhi Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pyke, M.S.C., Meng, W., Lampe, B. (2024). Security on Top of Security: Detecting Malicious Firewall Policy Changes via K-Means Clustering. In: Kim, D.D., Chen, C. (eds) Machine Learning for Cyber Security. ML4CS 2023. Lecture Notes in Computer Science, vol 14541. Springer, Singapore. https://doi.org/10.1007/978-981-97-2458-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2458-1_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2457-4

  • Online ISBN: 978-981-97-2458-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics