[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

PAEE: Parameter-Efficient and Data-Effective Image Captioning Model with Knowledge Prompter and Cross-Modal Representation Aligner

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14332))

  • 315 Accesses

Abstract

Large-scale pre-trained models and research on massive data have achieved state-of-the-art results in image captioning technology. However, the high cost of pre-training and fine-tuning has become a significant issue that needs to be considered. In this paper, we propose PAEE, a parameter-efficient and data-effective image captioning model that generates captions based on the input image encoding and the knowledge obtained from the newly introduced Knowledge Prompter. In PAEE, the only module that needs to be learned is the Cross-modal Representation Aligner (CRA) introduced between the visual encoder and language decoder, which facilitates the language model’s better adaptation to visual representation. The entire model greatly reduces the cost of pre-training and fine-tuning. Extensive experiments demonstrate that PAEE maintains competitive performance compared to large-scale pre-trained models and similar approaches, while reducing the number of trainable parameters. We design two new datasets to explore the data utilization ability of PAEE and discover that it can effectively use new data and achieve domain transfer without any training or fine-tuning. Additionally, we introduce the concept of \(small -data\) learning and find that PAEE has data-effective characteristics in limited computing resources and performs well even with fewer training samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, H., et al.: nocaps: novel object captioning at scale. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8948–8957 (2019)

    Google Scholar 

  2. Alayrac, J.B., et al.: Flamingo: a visual language model for few-shot learning. Adv. Neural. Inf. Process. Syst. 35, 23716–23736 (2022)

    Google Scholar 

  3. Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: semantic propositional image caption evaluation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 382–398. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_24

    Chapter  Google Scholar 

  4. Byeon, M., Park, B., Kim, H., Lee, S., Baek, W., Kim, S.: COYO-700M: image-text pair dataset (2022)

    Google Scholar 

  5. Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12M: pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3558–3568 (2021)

    Google Scholar 

  6. Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)

  7. Cho, J., Lei, J., Tan, H., Bansal, M.: Unifying vision-and-language tasks via text generation. In: International Conference on Machine Learning, pp. 1931–1942. PMLR (2021)

    Google Scholar 

  8. Dai, W., Hou, L., Shang, L., Jiang, X., Liu, Q., Fung, P.: Enabling multimodal generation on CLIP via vision-language knowledge distillation. arXiv preprint arXiv:2203.06386 (2022)

  9. Denkowski, M., Lavie, A.: Meteor Universal: language specific translation evaluation for any target language. In: Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 376–380 (2014)

    Google Scholar 

  10. Eichenberg, C., Black, S., Weinbach, S., Parcalabescu, L., Frank, A.: MAGMA–multimodal augmentation of generative models through adapter-based finetuning. arXiv preprint arXiv:2112.05253 (2021)

  11. Gao, T., Fisch, A., Chen, D.: Making pre-trained language models better few-shot learners. arXiv preprint arXiv:2012.15723 (2020)

  12. Gurari, D., et al.: VizWiz Grand Challenge: answering visual questions from blind people. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3608–3617 (2018)

    Google Scholar 

  13. Gurari, D., Zhao, Y., Zhang, M., Bhattacharya, N.: Captioning images taken by people who are blind. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16, pp. 417–434. Springer (2020). https://doi.org/10.1007/978-3-030-58520-4_25

  14. Krishna, R., et al.: Visual Genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123, 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  15. : Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks. Adv. Neural. Inf. Process. Syst. 33, 9459–9474 (2020)

    Google Scholar 

  16. Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning, pp. 12888–12900. PMLR (2022)

    Google Scholar 

  17. Li, X., et al.: OSCAR: object-semantics aligned pre-training for vision-language tasks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_8

    Chapter  Google Scholar 

  18. Luo, Z., Hu, Z., Xi, Y., Zhang, R., Ma, J.: I-Tuning: tuning frozen language models with image for lightweight image captioning (2023)

    Google Scholar 

  19. Mokady, R., Hertz, A., Bermano, A.H.: ClipCap: CLIP prefix for image captioning. arXiv preprint arXiv:2111.09734 (2021)

  20. Ordonez, V., Kulkarni, G., Berg, T.: Im2Text: describing images using 1 million captioned photographs. Adv. Neural Inf. Proc. Syst. 24 (2011)

    Google Scholar 

  21. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  22. Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k Entities: collecting region-to-phrase correspondences for richer image-to-sentence models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2641–2649 (2015)

    Google Scholar 

  23. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  24. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  25. Ramos, R., Martins, B., Elliott, D., Kementchedjhieva, Y.: SmallCap: lightweight image captioning prompted with retrieval augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2840–2849 (2023)

    Google Scholar 

  26. Sarto, S., Cornia, M., Baraldi, L., Cucchiara, R.: Retrieval-augmented transformer for image captioning. In: Proceedings of the 19th International Conference on Content-based Multimedia Indexing, pp. 1–7 (2022)

    Google Scholar 

  27. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2556–2565 (2018)

    Google Scholar 

  28. Sidorov, O., Hu, R., Rohrbach, M., Singh, A.: TextCaps: a dataset for image captioning with reading comprehension. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 742–758. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_44

    Chapter  Google Scholar 

  29. Tsimpoukelli, M., Menick, J.L., Cabi, S., Eslami, S., Vinyals, O., Hill, F.: Multimodal few-shot learning with frozen language models. Adv. Neural. Inf. Process. Syst. 34, 200–212 (2021)

    Google Scholar 

  30. Vedantam, R., Zitnick, C.L., Parikh, D.: CIDEr: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)

    Google Scholar 

  31. Xia, Q., et al.: XGPT: cross-modal generative pre-training for image captioning. In: Natural Language Processing and Chinese Computing: 10th CCF International Conference, NLPCC 2021, Qingdao, China, October 13–17, 2021, Proceedings, Part I 10, pp. 786–797. Springer (2021). https://doi.org/10.1007/978-3-030-88480-2_63

  32. Xu, C., Zhao, W., Yang, M., Ao, X., Cheng, W., Tian, J.: A unified generation-retrieval framework for image captioning. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2313–2316 (2019)

    Google Scholar 

  33. Yang, Z., et al.: UniTAB: unifying text and box outputs for grounded vision-language modeling. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXVI, pp. 521–539. Springer (2022). https://doi.org/10.1007/978-3-031-20059-5_30

  34. Zhang, S., et al.: OPT: open pre-trained transformer language models. arXiv preprint arXiv:2205.01068 (2022)

Download references

Acknowledgements

This paper is supported by the Capacity Development Grant of Southwest University (SWU116007) and the Natural Science Foundation of Chongqing (Grant No. CSTB2022NSCQ-MSX0437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Y., Liu, Z., Zou, Q., Chen, G. (2024). PAEE: Parameter-Efficient and Data-Effective Image Captioning Model with Knowledge Prompter and Cross-Modal Representation Aligner. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14332. Springer, Singapore. https://doi.org/10.1007/978-981-97-2390-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2390-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2389-8

  • Online ISBN: 978-981-97-2390-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics