Abstract
Large-scale pre-trained models and research on massive data have achieved state-of-the-art results in image captioning technology. However, the high cost of pre-training and fine-tuning has become a significant issue that needs to be considered. In this paper, we propose PAEE, a parameter-efficient and data-effective image captioning model that generates captions based on the input image encoding and the knowledge obtained from the newly introduced Knowledge Prompter. In PAEE, the only module that needs to be learned is the Cross-modal Representation Aligner (CRA) introduced between the visual encoder and language decoder, which facilitates the language model’s better adaptation to visual representation. The entire model greatly reduces the cost of pre-training and fine-tuning. Extensive experiments demonstrate that PAEE maintains competitive performance compared to large-scale pre-trained models and similar approaches, while reducing the number of trainable parameters. We design two new datasets to explore the data utilization ability of PAEE and discover that it can effectively use new data and achieve domain transfer without any training or fine-tuning. Additionally, we introduce the concept of \(small -data\) learning and find that PAEE has data-effective characteristics in limited computing resources and performs well even with fewer training samples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, H., et al.: nocaps: novel object captioning at scale. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8948–8957 (2019)
Alayrac, J.B., et al.: Flamingo: a visual language model for few-shot learning. Adv. Neural. Inf. Process. Syst. 35, 23716–23736 (2022)
Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: semantic propositional image caption evaluation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 382–398. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_24
Byeon, M., Park, B., Kim, H., Lee, S., Baek, W., Kim, S.: COYO-700M: image-text pair dataset (2022)
Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12M: pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3558–3568 (2021)
Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)
Cho, J., Lei, J., Tan, H., Bansal, M.: Unifying vision-and-language tasks via text generation. In: International Conference on Machine Learning, pp. 1931–1942. PMLR (2021)
Dai, W., Hou, L., Shang, L., Jiang, X., Liu, Q., Fung, P.: Enabling multimodal generation on CLIP via vision-language knowledge distillation. arXiv preprint arXiv:2203.06386 (2022)
Denkowski, M., Lavie, A.: Meteor Universal: language specific translation evaluation for any target language. In: Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 376–380 (2014)
Eichenberg, C., Black, S., Weinbach, S., Parcalabescu, L., Frank, A.: MAGMA–multimodal augmentation of generative models through adapter-based finetuning. arXiv preprint arXiv:2112.05253 (2021)
Gao, T., Fisch, A., Chen, D.: Making pre-trained language models better few-shot learners. arXiv preprint arXiv:2012.15723 (2020)
Gurari, D., et al.: VizWiz Grand Challenge: answering visual questions from blind people. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3608–3617 (2018)
Gurari, D., Zhao, Y., Zhang, M., Bhattacharya, N.: Captioning images taken by people who are blind. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16, pp. 417–434. Springer (2020). https://doi.org/10.1007/978-3-030-58520-4_25
Krishna, R., et al.: Visual Genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123, 32–73 (2017)
: Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks. Adv. Neural. Inf. Process. Syst. 33, 9459–9474 (2020)
Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning, pp. 12888–12900. PMLR (2022)
Li, X., et al.: OSCAR: object-semantics aligned pre-training for vision-language tasks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_8
Luo, Z., Hu, Z., Xi, Y., Zhang, R., Ma, J.: I-Tuning: tuning frozen language models with image for lightweight image captioning (2023)
Mokady, R., Hertz, A., Bermano, A.H.: ClipCap: CLIP prefix for image captioning. arXiv preprint arXiv:2111.09734 (2021)
Ordonez, V., Kulkarni, G., Berg, T.: Im2Text: describing images using 1 million captioned photographs. Adv. Neural Inf. Proc. Syst. 24 (2011)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002)
Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k Entities: collecting region-to-phrase correspondences for richer image-to-sentence models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2641–2649 (2015)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)
Ramos, R., Martins, B., Elliott, D., Kementchedjhieva, Y.: SmallCap: lightweight image captioning prompted with retrieval augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2840–2849 (2023)
Sarto, S., Cornia, M., Baraldi, L., Cucchiara, R.: Retrieval-augmented transformer for image captioning. In: Proceedings of the 19th International Conference on Content-based Multimedia Indexing, pp. 1–7 (2022)
Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2556–2565 (2018)
Sidorov, O., Hu, R., Rohrbach, M., Singh, A.: TextCaps: a dataset for image captioning with reading comprehension. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 742–758. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_44
Tsimpoukelli, M., Menick, J.L., Cabi, S., Eslami, S., Vinyals, O., Hill, F.: Multimodal few-shot learning with frozen language models. Adv. Neural. Inf. Process. Syst. 34, 200–212 (2021)
Vedantam, R., Zitnick, C.L., Parikh, D.: CIDEr: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)
Xia, Q., et al.: XGPT: cross-modal generative pre-training for image captioning. In: Natural Language Processing and Chinese Computing: 10th CCF International Conference, NLPCC 2021, Qingdao, China, October 13–17, 2021, Proceedings, Part I 10, pp. 786–797. Springer (2021). https://doi.org/10.1007/978-3-030-88480-2_63
Xu, C., Zhao, W., Yang, M., Ao, X., Cheng, W., Tian, J.: A unified generation-retrieval framework for image captioning. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2313–2316 (2019)
Yang, Z., et al.: UniTAB: unifying text and box outputs for grounded vision-language modeling. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXVI, pp. 521–539. Springer (2022). https://doi.org/10.1007/978-3-031-20059-5_30
Zhang, S., et al.: OPT: open pre-trained transformer language models. arXiv preprint arXiv:2205.01068 (2022)
Acknowledgements
This paper is supported by the Capacity Development Grant of Southwest University (SWU116007) and the Natural Science Foundation of Chongqing (Grant No. CSTB2022NSCQ-MSX0437).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Tian, Y., Liu, Z., Zou, Q., Chen, G. (2024). PAEE: Parameter-Efficient and Data-Effective Image Captioning Model with Knowledge Prompter and Cross-Modal Representation Aligner. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14332. Springer, Singapore. https://doi.org/10.1007/978-981-97-2390-4_9
Download citation
DOI: https://doi.org/10.1007/978-981-97-2390-4_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2389-8
Online ISBN: 978-981-97-2390-4
eBook Packages: Computer ScienceComputer Science (R0)