[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Locality Sensitive Hashing for Data Placement to Optimize Parallel Subgraph Query Evaluation

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Recently, parallel computing systems composed of interconnected workers through a high-speed network have become readily available, thereby presenting an opportunity for parallelizing subgraph queries in large graphs. To effectively evaluate these subgraph queries, it is crucial to place vertices among different workers. In contrast to widely used hash-based techniques, our approach leverages the utilization of locality sensitive hashing methods for data placement. This paper introduces a novel graph locality sensitive hashing method named VMH, which is specifically designed for data placement by considering the labels of vertices. By employing VMH, we can effectively place similar vertices to the same worker while considering the labels of vertices, thereby reducing redundant communication and computation across multiple workers during parallel subgraph query evaluation. Extensive experimental studies conducted on both large real and synthetic graphs demonstrate that our proposed techniques lead to significant improvements in query performance compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/bnu05pp/PSP.

References

  1. Abbas, Z., Kalavri, V., Carbone, P., Vlassov, V.: Streaming graph partitioning: an experimental study. Proc. VLDB Endow. 11(11), 1590–1603 (2018)

    Article  Google Scholar 

  2. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF data management systems. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 197–212. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_13

  3. Aluç, G., Özsu, M.T., Daudjee, K.: Building self-clustering RDF databases using tunable-LSH. VLDB J. 28(2), 173–195 (2019)

    Article  Google Scholar 

  4. Aumüller, M., Ceccarello, M.: Implementing distributed similarity joins using locality sensitive hashing. In: EDBT, pp. 1:78–1:90. OpenProceedings.org (2022)

    Google Scholar 

  5. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph matching by postponing cartesian products. In: SIGMOD, New York, NY, USA, pp. 1199–1214. Association for Computing Machinery (2016)

    Google Scholar 

  6. Broder, A.: On the resemblance and containment of documents. In: SEQUENCES, USA, p. 21. IEEE Computer Society (1997)

    Google Scholar 

  7. Fan, W.: Graph pattern matching revised for social network analysis. In: ICDT, New York, NY, USA, pp. 8–21. Association for Computing Machinery (2012)

    Google Scholar 

  8. Fan, W., et al.: Application driven graph partitioning. In: SIGMOD, New York, NY, USA, pp. 1765–1779. Association for Computing Machinery (2020)

    Google Scholar 

  9. Fan, W., Xu, R., Yin, Q., Yu, W., Zhou, J.: Application-driven graph partitioning. VLDB J. 32(1), 149–172 (2023)

    Article  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA (1979)

    Google Scholar 

  11. Han, W.-S., Lee, J., Lee, J.-H.: Turbo\({}_{\text{iso}}\): towards ultrafast and robust subgraph isomorphism search in large graph databases. In: SIGMOD, New York, NY, USA, pp. 337–348. Association for Computing Machinery (2013)

    Google Scholar 

  12. Hu, X., Yi, K., Tao, Y.: Output-optimal massively parallel algorithms for similarity joins. ACM Trans. Database Syst. 44(2), 61–636 (2019)

    Article  MathSciNet  Google Scholar 

  13. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL querying of large RDF graphs. PVLDB 4(11), 1123–1134 (2011)

    Google Scholar 

  14. Indyk, P.: Nearest neighbors in high-dimensional spaces. In: Handbook of Discrete and Computational Geometry, 2nd edn., pp. 877–892. Chapman and Hall/CRC (2004)

    Google Scholar 

  15. Ji, J., Li, J., Yan, S., Zhang, B., Tian, Q.: Super-bit locality-sensitive hashing. In: NIPS, NIPS 2012, Red Hook, NY, USA, pp. 108–116. Curran Associates Inc. (2012)

    Google Scholar 

  16. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  17. Kiran, P., Sivadasan, N.: Scalable graph similarity search in large graph databases. In: 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS), pp. 207–211 (2015)

    Google Scholar 

  18. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: WWW, New York, NY, USA, pp. 591–600. Association for Computing Machinery (2010)

    Google Scholar 

  19. Lai, L., Qing, Z., Yang, Z., Jin, X., Lai, Z., Wang, R., Hao, K., Lin, X., Qin, L., Zhang, W., Zhang, Y., Qian, Z., Zhou, J.: Distributed Subgraph Matching on Timely Dataflow. Proc. VLDB Endow. 12(10), 1099–1112 (2019)

    Article  Google Scholar 

  20. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  21. Marçais, G., DeBlasio, D.F., Pandey, P., Kingsford, C.: Locality-sensitive hashing for the edit distance. Bioinform. 35(14), i127–i135 (2019)

    Article  Google Scholar 

  22. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 4th edn. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26253-2

  23. Peng, P., Ozsu, M., Zou, L., Yan, C., Liu, C.: MPC: minimum property-cut RDF graph partitioning. In: ICDE, Los Alamitos, CA, USA, pp. 192–204. IEEE Computer Society (2022)

    Google Scholar 

  24. Pržulj, N., Corneil, D.G., Jurisica, I.: Efficient estimation of graphlet frequency distributions in protein-protein interaction networks. Bioinformatics 22(8), 974–980 (2006)

    Article  Google Scholar 

  25. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: SIGKDD, New York, NY, USA, pp. 990–998. Association for Computing Machinery (2008)

    Google Scholar 

  26. Yan, D., Guo, G., Chowdhury, M.M.R., Özsu, M.T., Ku, W., Lui, J.C.S.: G-thinker: a distributed framework for mining subgraphs in a big graph. In: ICDE, pp. 1369–1380, Dallas, TX, USA. IEEE (2020)

    Google Scholar 

  27. Zhang, B., Liu, X., Lang, B.: Fast graph similarity search via locality sensitive hashing. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015. LNCS, vol. 9314, pp. 623–633. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24075-6_60

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by NSFC under grants (U20A20174), Science and Technology Major Projects of Changsha City (No. kh2205032), and Hunan Provincial Natural Science Foundation of China under grant 2022JJ30165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Zhai, B., Jiang, Y., Li, Y., Qin, Z., Peng, P. (2024). Locality Sensitive Hashing for Data Placement to Optimize Parallel Subgraph Query Evaluation. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14331. Springer, Singapore. https://doi.org/10.1007/978-981-97-2303-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2303-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2302-7

  • Online ISBN: 978-981-97-2303-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics