[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

BoundEst: Estimating Join Cardinalities with Tight Upper Bounds

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14331))

  • 207 Accesses

Abstract

Cardinality estimation is a critical component of query optimization. Despite extensive research, achieving efficient and accurate estimation for join queries remains challenging. Estimating tight upper bounds for join cardinalities can help the query optimizer generate better and more robust query plans. However, existing methods fail to account for the high skewness of real data and produce loose upper bounds. In this paper, we propose a new framework BoundEst, which designs an upper bound formula that accounts for the presence of outliers in the data distribution and introduces the DBSCAN clustering algorithm to identify these outliers. Moreover, we incorporate the learning-based model to learn the correlation between attributes. Given queries, BoundEst efficiently estimates tight upper bounds for join cardinalities by applying separate calculation methods to outliers and other values. We evaluate our approach on real-world datasets, and the results show that BoundEst generates effective estimates for query optimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atserias, A., Grohe, M., Marx, D.: Size bounds and query plans for relational joins. In: 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 739–748. IEEE (2008)

    Google Scholar 

  2. Birant, D., Kut, A.: St-DBScan: an algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208–221 (2007)

    Article  Google Scholar 

  3. Bruno, N., Chaudhuri, S., Gravano, L.: Stholes: a multidimensional workload-aware histogram. In: Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, pp. 211–222 (2001)

    Google Scholar 

  4. Cai, W., Balazinska, M., Suciu, D.: Pessimistic cardinality estimation: tighter upper bounds for intermediate join cardinalities. In: Proceedings of the 2019 International Conference on Management of Data, pp. 18–35 (2019)

    Google Scholar 

  5. Deshpande, A., Garofalakis, M., Rastogi, R.: Independence is good: dependency-based histogram synopses for high-dimensional data. ACM SIGMOD Rec. 30(2), 199–210 (2001)

    Article  Google Scholar 

  6. Dutt, A., Wang, C., Nazi, A., Kandula, S., Narasayya, V., Chaudhuri, S.: Selectivity estimation for range predicates using lightweight models. Proc. VLDB Endow. 12(9), 1044–1057 (2019)

    Article  Google Scholar 

  7. Gens, R., Pedro, D.: Learning the structure of sum-product networks. In: International Conference on Machine Learning, pp. 873–880. PMLR (2013)

    Google Scholar 

  8. Gunopulos, D., Kollios, G., Tsotras, V.J., Domeniconi, C.: Selectivity estimators for multidimensional range queries over real attributes. VLDB J. 14, 137–154 (2005)

    Google Scholar 

  9. Han, Y., et al.: Cardinality estimation in DBMS: a comprehensive benchmark evaluation. arXiv preprint arXiv:2109.05877 (2021)

  10. Hasan, S., Thirumuruganathan, S., Augustine, J., Koudas, N., Das, G.: Deep learning models for selectivity estimation of multi-attribute queries. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 1035–1050 (2020)

    Google Scholar 

  11. Hertzschuch, A., Hartmann, C., Habich, D., Lehner, W.: Simplicity done right for join ordering. In: CIDR (2021)

    Google Scholar 

  12. Hilprecht, B., Schmidt, A., Kulessa, M., Molina, A., Kersting, K., Binnig, C.: DeepDB: learn from data, not from queries! arXiv preprint arXiv:1909.00607 (2019)

  13. Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P., Kemper, A.: Learned cardinalities: estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677 (2018)

  14. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)

    Article  MathSciNet  Google Scholar 

  15. Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann, T.: How good are query optimizers, really? Proc. VLDB Endow. 9(3), 204–215 (2015)

    Article  Google Scholar 

  16. Leis, V., Radke, B., Gubichev, A., Kemper, A., Neumann, T.: Cardinality estimation done right: index-based join sampling. In: CIDR (2017)

    Google Scholar 

  17. Li, F., Wu, B., Yi, K., Zhao, Z.: Wander join: online aggregation via random walks. In: Proceedings of the 2016 International Conference on Management of Data, pp. 615–629 (2016)

    Google Scholar 

  18. Muralikrishna, M., DeWitt, D.J.: Equi-depth multidimensional histograms. In: Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data, pp. 28–36 (1988)

    Google Scholar 

  19. Tzoumas, K., Deshpande, A., Jensen, C.S.: Lightweight graphical models for selectivity estimation without independence assumptions. Proc. VLDB Endow. 4(11), 852–863 (2011)

    Article  Google Scholar 

  20. Wu, P., Cong, G.: A unified deep model of learning from both data and queries for cardinality estimation. In: Proceedings of the 2021 International Conference on Management of Data, pp. 2009–2022 (2021)

    Google Scholar 

  21. Wu, Z., Negi, P., Alizadeh, M., Kraska, T., Madden, S.: FactorJoin: a new cardinality estimation framework for join queries (2023)

    Google Scholar 

  22. Wu, Z., Shaikhha, A., Zhu, R., Zeng, K., Han, Y., Zhou, J.: Bayescard: revitilizing Bayesian frameworks for cardinality estimation. arXiv preprint arXiv:2012.14743 (2020)

  23. Wu, Z., et al.: FSPN: a new class of probabilistic graphical model. arXiv preprint arXiv:2011.09020 (2020)

  24. Yang, Z., et al.: Neurocard: one cardinality estimator for all tables. arXiv preprint arXiv:2006.08109 (2020)

  25. Yi, P., Li, J., Choi, B., Bhowmick, S.S., Xu, J.: Flag: towards graph query autocompletion for large graphs. Data Sci. Eng. 7(2), 175–191 (2022)

    Article  Google Scholar 

  26. Yin, H., Gao, H., Wang, B., Li, S., Li, J.: Efficient trajectory compression and range query processing. World Wide Web 25(3), 1259–1285 (2022)

    Article  Google Scholar 

  27. Yu, T., et al.: Zebra: a novel method for optimizing text classification query in overload scenario. World Wide Web 26(3), 905–931 (2023)

    Article  Google Scholar 

  28. Zhao, Z., Christensen, R., Li, F., Hu, X., Yi, K.: Random sampling over joins revisited. In: Proceedings of the 2018 International Conference on Management of Data, pp. 1525–1539 (2018)

    Google Scholar 

  29. Zhu, R., et al.: Flat: fast, lightweight and accurate method for cardinality estimation. arXiv preprint arXiv:2011.09022 (2020)

Download references

Acknowledgement

The work is partially supported by the National Key Research and Development Program of China (2020YFB1707901), National Natural Science Foundation of China (Nos. U22A2025, 62072088, 62232007), Ten Thousand Talent Program (No. ZX20200035), Science and technology projects in Liaoning Province (No. 2023JH2/ 101300182), and 111 Project (No. B16009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Zhang, Y., Wang, B., Yang, X. (2024). BoundEst: Estimating Join Cardinalities with Tight Upper Bounds. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14331. Springer, Singapore. https://doi.org/10.1007/978-981-97-2303-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2303-4_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2302-7

  • Online ISBN: 978-981-97-2303-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics