Abstract
This paper is about the adaptive and personalized justification of the recommenders collaborative filtering system using notices. A method to justify recommendations based on item reviews and the user profile interest is suggested. The reviews with a positive sentiment have been first kept through the sentiment analysis expressed on the reviews and then second, selected potential reviews are candidates for the justification of items. To identify reviews candidates, the frequency calculation of user profile interest terms in the reviews has been done through the TF-IDF weighting method. In order to manage our reviews, an algorithm removing negative sentiment reviews is proposed. However, to test the method, recommendation data already made on a collaborative filtering recommendation system using notices and reviews made on Coursera courses have been used. The data used included 112 recommendations and 11 users. The implementation shows that the inference is constantly evolving and increasingly adapted to the user’s profile.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lémdani, R.: Système Hybride d’Adaptation dans les Systèmes de Recommandation. Thèse de Doctorat de l’Université Paris-Saclay préparée á CentraleSupelec, pp. 23- 33. 11 juillet 2016. https://www.theses.fr/2016SACLC050.pdf
Dudognon, D.: Diversité et système de recommandation: application á une plateforme de blogs á fort trafic thèse de Doctorat de l’Université de Toulouse, pp. 11–12. Accessed 04 April 2014
Panagiotis, S., Alexandros, N., Yannis, M.: Providing justifications in recommender systems. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 38(6), 1262–1272 (2008). https://ieeexplore.ieee.org/abstract/document/4648950
Kabore, K. , Sié, O. , Sèdes, F.: Information access assistant service (IAAS). In: The 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013), IEEE UK/RI Computer Chapter, London, UK, December, pp. 9–12 (2013)
Chouaib, Z.: Filtrage des tags dans un environnement collaboratif Mémoire de Fin d’études Master Université de 8 Mai 1945 - Guelma, juillet (2019)
Rakotonirina, A.J.: Filtrage Collaboratif Sensible au Contexte: une approche basée sur LDA. Mémoire en vue de l’obtention du diplome de Master 2 Université d’Antananarivo 27 Janvier 2017
Rana, A., Bridge, D.: Explanation Chains: recommendation by explanation. In: RecSys ’17 Poster Proceedings, Como, Italy, August, pp. 27–31 (2017)
Musto, C., Rossiello, G., de Gemmis, M., Lops, P., Semeraro, G.: Natural language justifications for recommender systems exploiting text summarization and sentiment analysis . Copyright c 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)
Ni, J., Li, J., McAuley, J.: Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 188–197 (2019)
Musto, C., Rossiello, G., de Gemmis, M., Lops, P., Semeraro, G.: Combining text summarization and aspect-based sentiment analysis of users’ reviews to justify recommendations. In: RecSys ’19: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 383–387 (2019). https://doi.org/10.1145/3298689.3347024
Amer, N.O.: Recherche Sociale et Personnalisée d’Information. Thèse de doctorat de l’universite grenoble alpes, pp. 25–39, 16 Décembre 2020
Tamine, L., Zemirli, N., Bahsoun, W.: Approche statistique pour la définition du profil d’un utilisateur de système de recherche d’information. Revue I3 - Information Interaction Intelligence, Cépaduès 7(1), 5–25 (2007). ffhal-00359531ff
Kyelem, Y., Kabore, K.K., Bassole, D.: Hybrid approach to cross-platform mobile interface development for IAAS. In: Shakya, S., Bestak, R., Palanisamy, R., Kamel, K.A. (eds.) Mobile Computing and Sustainable Informatics. Lecture Notes on Data Engineering and Communications Technologies, vol. 68. Springer, Singapore (2022). https://doi.org/10.1007/978981161866-6_16
Kabore, K. , Peninou, A., Sié, O. , Sèdes, F.: Implementing the information access assistant service (IAAS) for an evaluation. Int. J. Internet Technol. Secur. Trans. 6(1) (2015)
Kyelem, Y., Kabore, K.K., Ouedraogo, T.F., Sèdes, F.: Comparative study of justification methods in recommender systems: example of information access assistance service (IAAS). In 7th International Conference on Computer Science, Engineering and Applications vol. 11, pp. 173–181 (2021). https://doi.org/10.5121/csit.2021.112013
Kyelem, Y., Kabore, K.K., Ouedraogo, T.F, Sèdes, F.: Recommendation generation justified for information access assistance service (IAAS): study of architectural approaches. Acad. Ind. Res. Collab. Cent. (AIRCC) Int. J. Comput. Sci. Inf. Technol. 13(6), 1–17. https://doi.org/10.5121/ijcsit.2021.13601
Chen, L., Wang, F.: Explaining recommendations based on feature sentiments in product reviews. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces, pp. 17–28. ACM (2017)
Spillo, G., et al.: Exploiting distributional semantics models for natural language context-aware justifications for recommender systems In: Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020: Bologna, Italy, pp. 1–3 (2021). https://doi.org/10.4000/ books.aaccademia.8899
Liu, H., Yin, Q., Wang, W.Y.: Towards explainable NLP, a generative explanation framework for text classification. In ACL (2019)
Liu, C., Sheng, Y., Wei, Z., Yang, Y.: Research of text classification based on improved TF-IDF algorithm. In: IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE), pp. 218–222 (2018). https://doi.org/10.1109/IRCE.2018.8492945
Qaiser, S., Ali, R.: Text mining: use of TF-IDF to examine the relevance of words to documents. Int. J. Comput. Appl. 181(1), 25–29 (2018)
Gu, Y., Wang, Y., Huan, J., Sun, Y., Jia, W.: An improved TFIDF algorithm based on dual parallel adaptive computing model. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 657–663 (2018). https://doi.org/10.1109/Cybermatics_2018.2018.00133
El Rahman, S.A., AlOtaibi, F.A., AlShehri, W.A.: Sentiment analysis of twitter data. In: International Conference on Computer and Information Sciences (ICCIS), pp. 1–4 (2019). https://doi.org/10.1109/ICCISci.2019.8716464
Biswas, S., Ghosh, S., Roy, S.: A sentiment analysis on tweeter opinion of drug usage increase by TextBlob algorithm among various countries during pandemic. Int. J. Hit. Transc.: Eccn. 6(2A), 1–9 (2020). www.hithaldia.in/locate/ECCN
Kaboré, K.K.: Système d’aide pour l’accès non supervisé aux unités documentaire. Thèse de doctorat du l’Université de Ouaga 1 Pr Joseph KI-ZERBO, Janvier 2018
Yongfeng Zhang and Xu Chen: Explainable recommendation: a survey and new perspectives. Found. Trends Inf. Retr. 14(1), 1–101. (2020). https://doi.org/10.1561/1500000066
Peake, G., Wang, J.: Explanation mining: post Hoc interpretability of latent factor models for recommendation systems. In: KDD ’18: The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, August 19-23, 2018, London, United Kingdom. ACM, New York, NY, USA, pp. 2060–2069 (2018). https://doi.org/10.1145/3219819.3220072
Du, Y.: Des données aux connaissances: vers des recommandations plus pertinentes, diversifiées et transparentes. 2021. Thèse de doctorat. Imt-Mines Ales-Imt-Mines Alès Ecole Mines-Télécom
Balog, K., Radlinski, F., Petrov, A.: Measuring the impact of explanation bias: a study of natural language justifications for recommender systems (2023). arXiv:2303.09498
Abdollahi, B., Nasraoui, O.: Using explainability for constrained matrix factorization. In: Proceedings of the 11th ACM Conference on Recommender Systems. ACM, pp. 79–83 (2017)
https://www.kaggle.com/datasets/septa97/100k-courseras-course-reviews-dataset
Mustafa, M., Sebag, M.: Alors: an algorithm recommender system. Artif. Intell. 244, 291–314 (2017)
Behera, G., Nain, N.: Collaborative filtering with temporal features for movie recommendation system. Procedia Comput. Sci. 218, 1366–1373 (2023)
Acknowledgements
This work was carried out under the financial support of the “Pojet d’Appui á l’Enseignement Supérieur(PAES)”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yacouba, K., Ouedraogo, T.F., Kaboré, K.K. (2025). The Personalization of Justified Recommendations Using the Users Profile Interest and Reviews. In: Pal, S.K., Thampi, S.M., Abraham, A. (eds) Intelligent Informatics. ISI 2023. Smart Innovation, Systems and Technologies, vol 389. Springer, Singapore. https://doi.org/10.1007/978-981-97-2147-4_12
Download citation
DOI: https://doi.org/10.1007/978-981-97-2147-4_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2146-7
Online ISBN: 978-981-97-2147-4
eBook Packages: EngineeringEngineering (R0)