[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Personalization of Justified Recommendations Using the Users Profile Interest and Reviews

  • Conference paper
  • First Online:
Intelligent Informatics (ISI 2023)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 389))

Included in the following conference series:

  • 28 Accesses

Abstract

This paper is about the adaptive and personalized justification of the recommenders collaborative filtering system using notices. A method to justify recommendations based on item reviews and the user profile interest is suggested. The reviews with a positive sentiment have been first kept through the sentiment analysis expressed on the reviews and then second, selected potential reviews are candidates for the justification of items. To identify reviews candidates, the frequency calculation of user profile interest terms in the reviews has been done through the TF-IDF weighting method. In order to manage our reviews, an algorithm removing negative sentiment reviews is proposed. However, to test the method, recommendation data already made on a collaborative filtering recommendation system using notices and reviews made on Coursera courses have been used. The data used included 112 recommendations and 11 users. The implementation shows that the inference is constantly evolving and increasingly adapted to the user’s profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lémdani, R.: Système Hybride d’Adaptation dans les Systèmes de Recommandation. Thèse de Doctorat de l’Université Paris-Saclay préparée á CentraleSupelec, pp. 23- 33. 11 juillet 2016. https://www.theses.fr/2016SACLC050.pdf

  2. Dudognon, D.: Diversité et système de recommandation: application á une plateforme de blogs á fort trafic thèse de Doctorat de l’Université de Toulouse, pp. 11–12. Accessed 04 April 2014

    Google Scholar 

  3. Panagiotis, S., Alexandros, N., Yannis, M.: Providing justifications in recommender systems. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 38(6), 1262–1272 (2008). https://ieeexplore.ieee.org/abstract/document/4648950

  4. Kabore, K. , Sié, O. , Sèdes, F.: Information access assistant service (IAAS). In: The 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013), IEEE UK/RI Computer Chapter, London, UK, December, pp. 9–12 (2013)

    Google Scholar 

  5. Chouaib, Z.: Filtrage des tags dans un environnement collaboratif Mémoire de Fin d’études Master Université de 8 Mai 1945 - Guelma, juillet (2019)

    Google Scholar 

  6. Rakotonirina, A.J.: Filtrage Collaboratif Sensible au Contexte: une approche basée sur LDA. Mémoire en vue de l’obtention du diplome de Master 2 Université d’Antananarivo 27 Janvier 2017

    Google Scholar 

  7. Rana, A., Bridge, D.: Explanation Chains: recommendation by explanation. In: RecSys ’17 Poster Proceedings, Como, Italy, August, pp. 27–31 (2017)

    Google Scholar 

  8. Musto, C., Rossiello, G., de Gemmis, M., Lops, P., Semeraro, G.: Natural language justifications for recommender systems exploiting text summarization and sentiment analysis . Copyright c 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

    Google Scholar 

  9. Ni, J., Li, J., McAuley, J.: Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 188–197 (2019)

    Google Scholar 

  10. Musto, C., Rossiello, G., de Gemmis, M., Lops, P., Semeraro, G.: Combining text summarization and aspect-based sentiment analysis of users’ reviews to justify recommendations. In: RecSys ’19: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 383–387 (2019). https://doi.org/10.1145/3298689.3347024

  11. Amer, N.O.: Recherche Sociale et Personnalisée d’Information. Thèse de doctorat de l’universite grenoble alpes, pp. 25–39, 16 Décembre 2020

    Google Scholar 

  12. Tamine, L., Zemirli, N., Bahsoun, W.: Approche statistique pour la définition du profil d’un utilisateur de système de recherche d’information. Revue I3 - Information Interaction Intelligence, Cépaduès 7(1), 5–25 (2007). ffhal-00359531ff

    Google Scholar 

  13. Kyelem, Y., Kabore, K.K., Bassole, D.: Hybrid approach to cross-platform mobile interface development for IAAS. In: Shakya, S., Bestak, R., Palanisamy, R., Kamel, K.A. (eds.) Mobile Computing and Sustainable Informatics. Lecture Notes on Data Engineering and Communications Technologies, vol. 68. Springer, Singapore (2022). https://doi.org/10.1007/978981161866-6_16

  14. Kabore, K. , Peninou, A., Sié, O. , Sèdes, F.: Implementing the information access assistant service (IAAS) for an evaluation. Int. J. Internet Technol. Secur. Trans. 6(1) (2015)

    Google Scholar 

  15. Kyelem, Y., Kabore, K.K., Ouedraogo, T.F., Sèdes, F.: Comparative study of justification methods in recommender systems: example of information access assistance service (IAAS). In 7th International Conference on Computer Science, Engineering and Applications vol. 11, pp. 173–181 (2021). https://doi.org/10.5121/csit.2021.112013

  16. Kyelem, Y., Kabore, K.K., Ouedraogo, T.F, Sèdes, F.: Recommendation generation justified for information access assistance service (IAAS): study of architectural approaches. Acad. Ind. Res. Collab. Cent. (AIRCC) Int. J. Comput. Sci. Inf. Technol. 13(6), 1–17. https://doi.org/10.5121/ijcsit.2021.13601

  17. Chen, L., Wang, F.: Explaining recommendations based on feature sentiments in product reviews. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces, pp. 17–28. ACM (2017)

    Google Scholar 

  18. Spillo, G., et al.: Exploiting distributional semantics models for natural language context-aware justifications for recommender systems In: Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020: Bologna, Italy, pp. 1–3 (2021). https://doi.org/10.4000/ books.aaccademia.8899

  19. Liu, H., Yin, Q., Wang, W.Y.: Towards explainable NLP, a generative explanation framework for text classification. In ACL (2019)

    Google Scholar 

  20. Liu, C., Sheng, Y., Wei, Z., Yang, Y.: Research of text classification based on improved TF-IDF algorithm. In: IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE), pp. 218–222 (2018). https://doi.org/10.1109/IRCE.2018.8492945

  21. Qaiser, S., Ali, R.: Text mining: use of TF-IDF to examine the relevance of words to documents. Int. J. Comput. Appl. 181(1), 25–29 (2018)

    Google Scholar 

  22. Gu, Y., Wang, Y., Huan, J., Sun, Y., Jia, W.: An improved TFIDF algorithm based on dual parallel adaptive computing model. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 657–663 (2018). https://doi.org/10.1109/Cybermatics_2018.2018.00133

  23. El Rahman, S.A., AlOtaibi, F.A., AlShehri, W.A.: Sentiment analysis of twitter data. In: International Conference on Computer and Information Sciences (ICCIS), pp. 1–4 (2019). https://doi.org/10.1109/ICCISci.2019.8716464

  24. Biswas, S., Ghosh, S., Roy, S.: A sentiment analysis on tweeter opinion of drug usage increase by TextBlob algorithm among various countries during pandemic. Int. J. Hit. Transc.: Eccn. 6(2A), 1–9 (2020). www.hithaldia.in/locate/ECCN

  25. Kaboré, K.K.: Système d’aide pour l’accès non supervisé aux unités documentaire. Thèse de doctorat du l’Université de Ouaga 1 Pr Joseph KI-ZERBO, Janvier 2018

    Google Scholar 

  26. Yongfeng Zhang and Xu Chen: Explainable recommendation: a survey and new perspectives. Found. Trends Inf. Retr. 14(1), 1–101. (2020). https://doi.org/10.1561/1500000066

  27. Peake, G., Wang, J.: Explanation mining: post Hoc interpretability of latent factor models for recommendation systems. In: KDD ’18: The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, August 19-23, 2018, London, United Kingdom. ACM, New York, NY, USA, pp. 2060–2069 (2018). https://doi.org/10.1145/3219819.3220072

  28. Du, Y.: Des données aux connaissances: vers des recommandations plus pertinentes, diversifiées et transparentes. 2021. Thèse de doctorat. Imt-Mines Ales-Imt-Mines Alès Ecole Mines-Télécom

    Google Scholar 

  29. Balog, K., Radlinski, F., Petrov, A.: Measuring the impact of explanation bias: a study of natural language justifications for recommender systems (2023). arXiv:2303.09498

  30. Abdollahi, B., Nasraoui, O.: Using explainability for constrained matrix factorization. In: Proceedings of the 11th ACM Conference on Recommender Systems. ACM, pp. 79–83 (2017)

    Google Scholar 

  31. https://www.kaggle.com/datasets/septa97/100k-courseras-course-reviews-dataset

  32. Mustafa, M., Sebag, M.: Alors: an algorithm recommender system. Artif. Intell. 244, 291–314 (2017)

    Article  MathSciNet  Google Scholar 

  33. Behera, G., Nain, N.: Collaborative filtering with temporal features for movie recommendation system. Procedia Comput. Sci. 218, 1366–1373 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out under the financial support of the “Pojet d’Appui á l’Enseignement Supérieur(PAES)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyelem Yacouba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yacouba, K., Ouedraogo, T.F., Kaboré, K.K. (2025). The Personalization of Justified Recommendations Using the Users Profile Interest and Reviews. In: Pal, S.K., Thampi, S.M., Abraham, A. (eds) Intelligent Informatics. ISI 2023. Smart Innovation, Systems and Technologies, vol 389. Springer, Singapore. https://doi.org/10.1007/978-981-97-2147-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2147-4_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2146-7

  • Online ISBN: 978-981-97-2147-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics