[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SCORD: Shuffling Column-Oriented Relational Database to Enhance Security

  • Conference paper
  • First Online:
Ubiquitous Security (UbiSec 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2034))

Included in the following conference series:

Abstract

Column-oriented database systems have drawn a lot of attention in recent years because of their performance advantages in terms of data querying and computation on columns. Since databases often contain sensitive and valuable information, protecting the confidentiality, integrity, and availability of the database is of utmost importance. In addition to encryption, shuffling can also be used to secure the database storage files. In this paper, we present a novel approach called SCORD to prevent the leakage of confidential data stored in the database management system by applying the shuffling technique on column-oriented databases. SCORD can protect column-oriented databases in both offline storage mode and online running mode. SCORD also bundles semantically or statistically associated attributes, such that the data is shuffled in a way that appears deceptively authentic and indistinguishable to potential attacks. We implement a prototype of SCORD and evaluate it using a set of real-world data. The experiment results demonstrate the effectiveness of our approach and show that the processing overhead is acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 563–574 (2004)

    Google Scholar 

  2. Alaya, B., Laouamer, L., Msilini, N.: Homomorphic encryption systems statement: trends and challenges. Comput. Sci. Rev. 36, 100235 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bello, S.A., et al.: Cloud computing in construction industry: use cases, benefits and challenges. Autom. Constr. 122, 103441 (2021)

    Article  Google Scholar 

  4. Cyan4973: Cyan4973/xxHash. https://github.com/Cyan4973/xxHash

  5. Duncan, R.: A multi-cloud world requires a multi-cloud security approach. Comput. Fraud Secur. 2020(5), 11–12 (2020)

    Article  Google Scholar 

  6. Estabrook, G.F., Brill, R.C.: The theory of the taxir accessioner. Math. Biosci. 5(3–4), 327–340 (1969)

    Article  Google Scholar 

  7. Franceschi-Bicchierai, L.: T-mobile says hacker accessed personal data of 37 million customers. https://techcrunch.com/2023/01/19/t-mobile-data-breach/

  8. Geng, T., Alsuwat, H., Huang, C.T., Farkas, C.: Securing relational database storage with attribute association aware shuffling. In: 2019 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8. IEEE (2019)

    Google Scholar 

  9. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  Google Scholar 

  10. Grubbs, P., Ristenpart, T., Shmatikov, V.: Why your encrypted database is not secure. In: Proceedings of the 16th Workshop on Hot Topics in Operating Systems, pp. 162–168 (2017)

    Google Scholar 

  11. Guan, Z., et al.: Cross-lingual multi-keyword rank search with semantic extension over encrypted data. Inf. Sci. 514, 523–540 (2020)

    Article  Google Scholar 

  12. Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, S., Kersten, M.: Monetdb: two decades of research in column-oriented database. IEEE Data Eng. Bull. (2012)

    Google Scholar 

  13. IMDB: IMDB data files available for download. https://datasets.imdbws.com/

  14. Jeong, D.H., Jeong, B.K., Leslie, N., Kamhoua, C., Ji, S.Y.: Designing a supervised feature selection technique for mixed attribute data analysis. Mach. Learn. Appl. 10, 100431 (2022)

    Google Scholar 

  15. Korsh, J.F., LaFollette, P.S.: Constant time generation of derangements. Inf. Process. Lett. 90(4), 181–186 (2004)

    Article  MathSciNet  Google Scholar 

  16. Marcolla, C., Sucasas, V., Manzano, M., Bassoli, R., Fitzek, F.H., Aaraj, N.: Survey on fully homomorphic encryption, theory, and applications. Proc. IEEE 110(10), 1572–1609 (2022)

    Article  Google Scholar 

  17. Popa, R.A., Redfield, C.M., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting confidentiality with encrypted query processing. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, pp. 85–100 (2011)

    Google Scholar 

  18. PWC: Cloud security report (2019)

    Google Scholar 

  19. Varri, U., Pasupuleti, S., Kadambari, K.: A scoping review of searchable encryption schemes in cloud computing: taxonomy, methods, and recent developments. J. Supercomput. 76(4), 3013–3042 (2020)

    Article  Google Scholar 

  20. Zheng, Y., Lu, R., Guan, Y., Shao, J., Zhu, H.: Achieving efficient and privacy-preserving exact set similarity search over encrypted data. IEEE Trans. Dependable Secure Comput. 19(2), 1090–1103 (2020)

    Article  Google Scholar 

  21. Zyuzin, V.D., Vdovenko, D.V., Bolshakov, V.N., Busenkov, A.A., Krivdin, A.D.: Attack on hash functions. EurAsian J. BioSciences 14(1) (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieming Geng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geng, T., Huang, CT., Farkas, C. (2024). SCORD: Shuffling Column-Oriented Relational Database to Enhance Security. In: Wang, G., Wang, H., Min, G., Georgalas, N., Meng, W. (eds) Ubiquitous Security. UbiSec 2023. Communications in Computer and Information Science, vol 2034. Springer, Singapore. https://doi.org/10.1007/978-981-97-1274-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1274-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1273-1

  • Online ISBN: 978-981-97-1274-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics