[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

FedQL: Q-Learning Guided Aggregation for Federated Learning

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14487))

Abstract

Federated learning is a distributed machine learning paradigm, which is able to achieve model training without sharing clients’ private data. In each round, after receiving a global model, selected clients train the model with local private data and report updated parameters to server. Then the server performs aggregation to generate a new global model. Currently, aggregations are generally conducted in a heuristic manner, and show great challenges with non-Independent and Identically Distributed (non-IID) data. In this paper, we propose to employ Q-learning to solve the aggregation problem under non-IID data. Specifically, we define state, action as well as reward in the target aggregation scenario, and fit it into Q-learning framework. With the learning procedure, effective actions indicating weights assignment for aggregation can be figured out according to certain system states. Evaluation shows that the proposed FedQL strategy can improve the convergence speed obviously under non-IID data, when compared with existing schemes FedAvg, FedProx and FedAdp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the starting point of one round is that the server has a global model, either an initialized one or aggregated one from the last round.

References

  1. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282 (2017)

    Google Scholar 

  2. Xia, Q., Ye, W., Tao, Z., Wu, J., Li, Q.: A survey of federated learning for edge computing: research problems and solutions. High-Confidence Comput. 1(1), 100008 (2021)

    Article  Google Scholar 

  3. Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Yu, H.: Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 13(3), 1–207 (2019)

    Google Scholar 

  4. Xie, Z., Huang, Y., Yu, D., Parizi, R.M., Zheng, Y., Pang, J.: Fedee: a federated graph learning solution for extended enterprise collaboration. IEEE Trans. Ind. Inf. 19(7), 8061–8071 (2023)

    Article  Google Scholar 

  5. Brisimi, T.S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I.C., Shi, W.: Federated learning of predictive models from federated electronic health records. Int. J. Med. Inf. 112, 59–67 (2018)

    Article  Google Scholar 

  6. Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9

    Chapter  Google Scholar 

  7. Hard, A., et al.: Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018)

  8. Yang, T., et al.: Applied federated learning: improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903 (2018)

  9. Leroy, D., Coucke, A., Lavril, T., Gisselbrecht, T., Dureau, J.: Federated learning for keyword spotting. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6341–6345 (2019)

    Google Scholar 

  10. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  11. Chen, S., Wang, Y., Yu, D., Ren, J., Xu, C., Zheng, Y.: Privacy-enhanced decentralized federated learning at dynamic edge. IEEE Trans. Computers 72(8), 2165–2180 (2023)

    Article  Google Scholar 

  12. Ma, Z., Zhao, M., Cai, X., Jia, Z.: Fast-convergent federated learning with class-weighted aggregation. J. Syst. Architect. 117, 102125 (2021)

    Article  Google Scholar 

  13. Wang, Y., et al.: Theoretical convergence guaranteed resource-adaptive federated learning with mixed heterogeneity. In: KDD, pp. 2444–2455 (2023)

    Google Scholar 

  14. Arachchige, P.C.M., Bertok, P., Khalil, I., Liu, D., Camtepe, S., Atiquzzaman, M.: A trustworthy privacy preserving framework for machine learning in industrial iot systems. IEEE Trans. Ind. Inf. 16(9), 6092–6102 (2020)

    Article  Google Scholar 

  15. Kim, H., Park, J., Bennis, M., Kim, S.-L.: Blockchained on-device federated learning. IEEE Commun. Lett. 24(6), 1279–1283 (2019)

    Article  Google Scholar 

  16. Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., Yan, Q.: A blockchain-based decentralized federated learning framework with committee consensus. IEEE Netw. 35(1), 234–241 (2020)

    Article  Google Scholar 

  17. Lu, Y., Huang, X., Zhang, K., Maharjan, S., Zhang, Y.: Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Trans. Veh. Technol. 69(4), 4298–4311 (2020)

    Article  Google Scholar 

  18. Majeed, U., Hong, C.S.: Flchain: federated learning via mec-enabled blockchain network. In: 20th Asia-Pacific Network Operations and Management Symposium, pp. 1–4 (2019)

    Google Scholar 

  19. Hu, F., Zhou, W., Liao, K., Li, H.: Contribution-and participation-based federated learning on non-iid data. IEEE Intell. Syst. 37(4), 35–43 (2022)

    Article  Google Scholar 

  20. Xu, J., Chen, Z., Quek, T.Q., Chong, K.F.E.: Fedcorr: multi-stage federated learning for label noise correction. In: Conference on Computer Vision and Pattern Recognition, pp. 10 184–10 193 (2022)

    Google Scholar 

  21. Zhang, L., Shen, L., Ding, L., Tao, D., Duan, L.-Y.: Fine-tuning global model via data-free knowledge distillation for non-iid federated learning. In: Conference on Computer Vision and Pattern Recognition, pp. 10 174–10 183 (2022)

    Google Scholar 

  22. Zheng, Y., Lai, S., Liu, Y., Yuan, X., Yi, X., Wang, C.: Aggregation service for federated learning: an efficient, secure, and more resilient realization. IEEE Trans. Depend. Secure Comput. 20(2), 988–1001 (2022)

    Article  Google Scholar 

  23. Nishio, T., Yonetani, R.: Client selection for federated learning with heterogeneous resources in mobile edge. In: IEEE International Conference on Communications, pp. 1–7 (2019)

    Google Scholar 

  24. Lin, W., Xu, Y., Liu, B., Li, D., Huang, T., Shi, F.: Contribution-based federated learning client selection. Int. J. Intell. Syst. 37(10), 7235–7260 (2022)

    Article  Google Scholar 

  25. Fang, X., Ye, M.: Robust federated learning with noisy and heterogeneous clients. In: Conference on Computer Vision and Pattern Recognition, pp. 10 072–10 081 (2022)

    Google Scholar 

  26. Wang, H., Kaplan, Z., Niu, D., Li, B.: Optimizing federated learning on non-iid data with reinforcement learning. In: IEEE Conference on Computer Communications, pp. 1698–1707 (2020)

    Google Scholar 

  27. Zhang, S.Q., Lin, J., Zhang, Q.: A multi-agent reinforcement learning approach for efficient client selection in federated learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 8, pp. 9091–9099 (2022)

    Google Scholar 

  28. Li, Z., Zhou, Y., Wu, D., Wang, R.: Local model update for blockchain enabled federated learning: approach and analysis. In: International Conference on Blockchain, pp. 113–121 (2021)

    Google Scholar 

  29. Xu, C., Hong, Z., Huang, M., Jiang, T.: Acceleration of federated learning with alleviated forgetting in local training. In: Conference on Learning Representations, ICLR (2022)

    Google Scholar 

  30. Jhunjhunwala, D., Gadhikar, A., Joshi, G., Eldar, Y.C.: Adaptive quantization of model updates for communication-efficient federated learning. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3110–3114 (2021)

    Google Scholar 

  31. Liu, W., Chen, L., Chen, Y., Zhang, W.: Accelerating federated learning via momentum gradient descent. IEEE Trans. Parallel Distrib. Syst. 31(8), 1754–1766 (2020)

    Article  Google Scholar 

  32. Ullah, S., Kim, D.: Federated learning convergence on IID features via optimized local model parameters. In: International Conference on Big Data and Smart Computing, pp. 92–95 (2022)

    Google Scholar 

  33. Xu, J., Du, W., Jin, Y., He, W., Cheng, R.: Ternary compression for communication-efficient federated learning. IEEE Trans. Neural Netw. Learn. Syst. 33(3), 1162–1176 (2022)

    Article  MathSciNet  Google Scholar 

  34. Cui, L., Su, X., Zhou, Y., Liu, J.: Optimal rate adaption in federated learning with compressed communications. In: Conference on Computer Communications, pp. 1459–1468 (2022)

    Google Scholar 

  35. Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., Pedarsani, R.: Fedpaq: a communication-efficient federated learning method with periodic averaging and quantization. In: International Conference on Artificial Intelligence and Statistics, pp. 2021–2031 (2020)

    Google Scholar 

  36. Caldas, S., Konečny, J., McMahan, H.B., Talwalkar, A.: Expanding the reach of federated learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210 (2018)

  37. Paragliola, G.: Evaluation of the trade-off between performance and communication costs in federated learning scenario. Future Gener. Comput. Syst. 136, 282–293 (2022)

    Article  Google Scholar 

  38. Abasi, A.K., Aloqaily, M., Guizani, M.: Grey wolf optimizer for reducing communication cost of federated learning. In: IEEE Global Communications Conference 2022, pp. 1049–1154 (2022)

    Google Scholar 

  39. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  40. Nguyen, V.-D., Sharma, S.K., Vu, T.X., Chatzinotas, S., Ottersten, B.: Efficient federated learning algorithm for resource allocation in wireless IoT networks. IEEE Internet Things J. 8(5), 3394–3409 (2020)

    Article  Google Scholar 

  41. Song, Q., Lei, S., Sun, W., Zhang, Y.: Adaptive federated learning for digital twin driven industrial internet of things. In: IEEE Wireless Communications and Networking Conference 2021, pp. 1–6 (2021)

    Google Scholar 

  42. Huang, W., Li, T., Wang, D., Du, S., Zhang, J.: Fairness and accuracy in federated learning. arXiv preprint arXiv:2012.10069 (2020)

  43. Tan, L., et al.: Adafed: optimizing participation-aware federated learning with adaptive aggregation weights. IEEE Trans. Netw. Sci. Eng. 9, 2708–2720 (2022)

    Article  Google Scholar 

  44. Mohri, M., Sivek, G., Suresh, A.T.: Agnostic federated learning. In: International Conference on Machine Learning, pp. 4615–4625 (2019)

    Google Scholar 

  45. Prauzek, M., Mourcet, N.R., Hlavica, J., Musilek, P.: Q-learning algorithm for energy management in solar powered embedded monitoring systems. In: IEEE Congress on Evolutionary Computation 2018, pp. 1–7 (2018)

    Google Scholar 

  46. Wu, H., Wang, P.: Fast-convergent federated learning with adaptive weighting. IEEE Trans. Cogn. Commun. Network. 7(4), 1078–1088 (2021)

    Article  Google Scholar 

  47. LeCun, Y., Bottou, L., Bengio, Y.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  48. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. arXiv preprint arXiv:1404.5997 (2014)

  49. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  50. Duan, M., et al.: Astraea: self-balancing federated learning for improving classification accuracy of mobile deep learning applications. In: International Conference on Computer Design, pp. 246–254 (2019)

    Google Scholar 

  51. Jiao, Y., Wang, P., Niyato, D., Lin, B., Kim, D.I.: Toward an automated auction framework for wireless federated learning services market. IEEE Trans. Mob. Comput. 20(10), 3034–3048 (2020)

    Article  Google Scholar 

  52. Yonetani, R., Takahashi, T., Hashimoto, A., Ushiku, Y.: Decentralized learning of generative adversarial networks from non-iid data. arXiv preprint arXiv:1905.09684 (2019)

  53. Yoon, T., Shin, S., Hwang, S.J., Yang, E.: Fedmix: approximation of mixup under mean augmented federated learning. arXiv preprint arXiv:2107.00233 (2021)

Download references

Acknowledgements

This paper is supported by National Natural Science Foundation of China (Grant No. 61973214), Shandong Provincial Natural Science Foundation (Grant No. ZR2020MF069), and Shandong Provincial Postdoctoral Innovation Project (Grant No. 202003005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, M., Zhao, M., Zhang, T., Yu, N., Lu, J. (2024). FedQL: Q-Learning Guided Aggregation for Federated Learning. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14487. Springer, Singapore. https://doi.org/10.1007/978-981-97-0834-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0834-5_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0833-8

  • Online ISBN: 978-981-97-0834-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics