[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

MMDBench: A Benchmark for Hybrid Query in Multimodal Database

  • Conference paper
  • First Online:
Benchmarking, Measuring, and Optimizing (Bench 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14521))

Included in the following conference series:

  • 345 Accesses

Abstract

Multimodal data, integrating various types of data like images, text, audio, and video, has become prevalent in the era of big data. However, there is a gap in benchmarking specifically designed for multimodal data, as existing benchmarks primarily focus on traditional and multimodel databases, lacking a comprehensive framework for evaluating systems handling multimodal data. In this paper, we present a novel benchmark program, named MMDBench, specifically designed to evaluate the performance of multimodal databases that accommodate various data modalities, including structured data, images, and text. The workload of MMDBench is composed of eleven tasks, inspired by real-world scenarios in social networks, where multiple data modalities are involved. Each task simulates a specific scenario that necessitates the integration of at least two distinct data modalities. To demonstrate the effectiveness of MMDBench, we have developed a hybrid database system to execute the workload and have uncovered diverse characteristics of multimodal databases in the execution of hybrid queries.

Supported by National Key R &D Program of China(Grant No. 2022YFF0711600), National Key R &D Program of China(Grant No. 2021YFF0704200) and Informatization Plan of Chinese Academy of Sciences(Grant No. CAS-WX2022GC-02).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a database benchmark based on the Facebook social graph. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 1185–1196 (2013)

    Google Scholar 

  2. Bronson, N., et al.: \(\{\)TAO\(\}\):\(\{\)Facebook’s\(\}\) distributed data store for the social graph. In: 2013 USENIX Annual Technical Conference (USENIX ATC 2013), pp. 49–60 (2013)

    Google Scholar 

  3. Cai, Q., Wang, H., Li, Z., Liu, X.: A survey on multimodal data-driven smart healthcare systems: approaches and applications. IEEE Access 7, 133583–133599 (2019)

    Article  Google Scholar 

  4. Chandrasekaran, G., Nguyen, T.N., Hemanth D, J.: Multimodal sentimental analysis for social media applications: a comprehensive review. Wiley Interdisc. Rev.: Data Min. Knowl. Disc. 11(5), e1415 (2021)

    Google Scholar 

  5. Chasseur, C., Li, Y., Patel, J.M.: Enabling JSON document stores in relational systems. In: WebDB, vol. 13, pp. 14–15 (2013)

    Google Scholar 

  6. Erling, O., et al.: The LDBC social network benchmark: interactive workload. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 619–630 (2015)

    Google Scholar 

  7. Ghazal, A., et al.: Bigbench v2: the new and improved bigbench. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 1225–1236. IEEE (2017)

    Google Scholar 

  8. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Proj. Rep. Stanford 1(12), 2009 (2009)

    Google Scholar 

  9. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database forstudying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  10. Kim, B., Koo, K., Enkhbat, U., Kim, S., Kim, J., Moon, B.: M2bench: a database benchmark for multi-model analytic workloads. Proc. VLDB Endowment 16(4), 747–759 (2022)

    Article  Google Scholar 

  11. Misra, R.: News category dataset. arXiv preprint arXiv:2209.11429 (2022)

  12. Nambiar, R.O., Poess, M.: The making of TPC-DS. In: VLDB, vol. 6, pp. 1049–1058 (2006)

    Google Scholar 

  13. Rothe, R., Timofte, R., Gool, L.V.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vision 126(2–4), 144–157 (2018)

    Article  MathSciNet  Google Scholar 

  14. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  15. Wang, Z., Li, L., Li, Q., Zeng, D.: Multimodal data enhanced representation learning for knowledge graphs. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  16. Wei, C., et al.: AnalyticDB-V: a hybrid analytical engine towards query fusion for structured and unstructured data. Proc. VLDB Endowment 13(12), 3152–3165 (2020)

    Article  Google Scholar 

  17. Wei, J., Zou, K.: Eda: easy data augmentation techniques for boosting performance on text classification tasks. arXiv preprint arXiv:1901.11196 (2019)

  18. Zhang, C., Lu, J.: Holistic evaluation in multi-model databases benchmarking. Distrib. Parallel Databases 39, 1–33 (2021)

    Article  Google Scholar 

  19. Zhang, C., Lu, J., Xu, P., Chen, Y.: UniBench: a benchmark for multi-model database management systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2018. LNCS, vol. 11135, pp. 7–23. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11404-6_2

    Chapter  Google Scholar 

  20. Zhao, Z., Shen, Z., Mao, A., Wang, H., Hu, C.: PandaDB: an AI-native graph database for unified managing structured and unstructured data. In: Wang, X., et al. (eds.) Database Systems for Advanced Applications, DASFAA 2023. LNCS, vol. 13946, pp. 669–673. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30678-5_53

    Chapter  Google Scholar 

  21. Zhu, X., et al.: Multi-modal knowledge graph construction and application: a survey. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, A. et al. (2024). MMDBench: A Benchmark for Hybrid Query in Multimodal Database. In: Hunold, S., Xie, B., Shu, K. (eds) Benchmarking, Measuring, and Optimizing. Bench 2023. Lecture Notes in Computer Science, vol 14521. Springer, Singapore. https://doi.org/10.1007/978-981-97-0316-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0316-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0315-9

  • Online ISBN: 978-981-97-0316-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics