[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimal Trading Strategy of Data-Center Prosumer in Multiple Local Energy Markets

  • Chapter
  • First Online:
Local Energy Markets
  • 5 Accesses

Abstract

The local energy market (LEM) has emerged as an effective way to automatically regulate the power balance and promote distributed energy utilization of the distribution system. With the increasing integration of data centers (DCs) with high load-shifting flexibility into the distribution network, they have gradually become significant market players in the LEMs. However, limited research has been done on the optimal trading strategy of DCs within LEMs. A bi-level optimization model for networked DCs across multiple LEMs is proposed to bridge the research gap. Firstly, since DCs with substantial power consumption can directly impact the market clearing prices, LEM participants are classified into DC-type and conventional-type prosumers, both analytically modeled. Secondly, a LEM model incorporating DCs is created, employing the alternating direction method of multipliers (ADMM) to clear the market in a distributed method, thereby ensuring end-user privacy. Thirdly, a bi-level optimal trading strategy for interconnected DC prosumers across various LEMs is proposed to distribute workloads among DCs optimally. Fourth, the differential evolution and meta-model address the bi-level optimization problem efficiently. The simulation results indicate that this strategy enhances networked DCs’ benefits, boosts renewable energy utilization, and improves overall social welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cedillo, M. H., Sun, H., Jiang, J., & Cao, Y. (2022). Dynamic pricing and control for EV charging stations with solar generation. Applied Energy, 326, 119920.

    Article  Google Scholar 

  2. Li, Z., & Ma, C. (2022). A temporal–spatial charging coordination scheme incorporating probability of EV charging availability. Applied Energy, 325, 119838.

    Article  Google Scholar 

  3. Song, M., & Gao, C. (2022). Integration of distributed resources in smart grids for demand response and transactive energy: A case study of TCLs. Springer.

    Google Scholar 

  4. Chen, M., Gao, C., Shahidehpour, M., Li, Z., Chen, S., & Li, D. (2020). Internet data center load modeling for demand response considering the coupling of multiple regulation methods. IEEE Transactions on Smart Grid, 12(3), 2060–2076.

    Article  MATH  Google Scholar 

  5. Melton, R. B. (2013). Gridwise transactive energy framework (draft version) (No. PNNL-SA-22946). Pacific Northwest National Lab (PNNL), Richland, WA (United States).

    Google Scholar 

  6. Song, M., Cai, Y., Gao, C., Chen, T., Yao, Y., & Ming, H. (2022). Transactive energy in power distribution systems: Paving the path towards cyber-physical-social system. International Journal of Electrical Power & Energy Systems, 142, 108289.

    Article  Google Scholar 

  7. Baroche, T., Pinson, P., Latimier, R. L. G., & Ahmed, H. B. (2019). Exogenous cost allocation in peer-to-peer electricity markets. IEEE Transactions on Power Systems, 34(4), 2553–2564.

    Article  Google Scholar 

  8. Khorasany, M., Mishra, Y., & Ledwich, G. (2019). A decentralized bilateral energy trading system for peer-to-peer electricity markets. IEEE Transactions on industrial Electronics, 67(6), 4646–4657.

    Article  MATH  Google Scholar 

  9. Song, M., Sun, W., Wang, Y., Shahidehpour, M., Li, Z., & Gao, C. (2019). Hierarchical scheduling of aggregated TCL flexibility for transactive energy in power systems. IEEE Transactions on Smart Grid, 11(3), 2452–2463.

    Article  MATH  Google Scholar 

  10. Yang, Q., & Wang, H. (2021). Privacy-preserving transactive energy management for IoT-aided smart homes via blockchain. IEEE Internet of Things Journal, 8(14), 11463–11475.

    Article  MATH  Google Scholar 

  11. Johanning, S., & Bruckner, T. (2019, September). Blockchain-based peer-to-peer energy trade: A critical review of disruptive potential. In 2019 16th International Conference on the European Energy Market (EEM) (pp. 1–8), Ljubljana, Slovenia.

    Google Scholar 

  12. S&P Global Platts. (2020). World’s first high-frequency decentralized energy market helps drive Port of Rotterdam’s energy transition. https://www.spglobal.com/platts/en/about-platts/media-center/press-releases/2020/051020-world-s-first-high-frequency-decentralized-energy-market-driveport-of-rotterdam-energy-transition. Accessed May 10, 2020.

  13. Power Technology. (2017). The Brooklyn microgrid: Blockchain-enabled community power. https://www.power-technology.com/features/featurethe-brooklyn-microgrid-blockchain-enabled-community-power-5783564/. Accessed January 12, 2017.

  14. Share&Charge. (2020). Open charging network: The next level of OCPI-Based ERoaming. https://shareandcharge.com/. Accessed July 10, 2020.

  15. News Desk. (2018). Energo boost clean energy production through Qtum Blockchain implementation in Philippines. https://www.geospatialworld.net/news/energo-clean-energy-production-qtum-blockchain/. Accessed February 7, 2018.

  16. Zhu, S., Song, M., Lim, M. K., Wang, J., & Zhao, J. (2020). The development of energy blockchain and its implications for China’s energy sector. Resources Policy, 66, 101595.

    Article  Google Scholar 

  17. News Desk. (2024). Industry Leaders Adopt NVIDIA Robotics for Development of AI-Powered Autonomous Machines. https://www.geospatialworld.net/news/industry-leaders-nvidia-robotics-ai-powered-autonomous-machines/, Accessed June 10, 2024.

  18. The Government of the People's Republic of China. (2021). Outline of the fourteenth five-year plan for national economic and social development of the People’s Republic of China and Vision 2035. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202103/P020210323538797779059.pdf. Accessed April 21, 2021.

  19. IESPLZA. (2018). Supporting data centres to control carbon without controlling electricity. https://www.iesplaza.com/article-6006-1.html. Accessed November 25, 2018.

  20. Mahbod, M. H. B., Chng, C. B., Lee, P. S., & Chui, C. K. (2022). Energy saving evaluation of an energy efficient data center using a model-free reinforcement learning approach. Applied Energy, 322, 119392.

    Article  Google Scholar 

  21. Zhang, Q., Zeng, W., Lin, Q., Chng, C. B., Chui, C. K., & Lee, P. S. (2023). Deep reinforcement learning towards real-world dynamic thermal management of data centers. Applied Energy, 333, 120561.

    Article  Google Scholar 

  22. Iqbal, W., Berral, J. L., Erradi, A., & Carrera, D. (2019). Real-time data center’s telemetry reduction and reconstruction using Markov chain models. IEEE Systems Journal, 13(4), 4039–4050.

    Article  Google Scholar 

  23. Lu, X., Kong, F., Liu, X., Yin, J., Xiang, Q., & Yu, H. (2017). Bulk savings for bulk transfers: Minimizing the energy-cost for geo-distributed data centers. IEEE Transactions on Cloud Computing, 8(1), 73–85.

    Article  Google Scholar 

  24. Yu, L., Jiang, T., & Zou, Y. (2016). Distributed real-time energy management in data center microgrids. IEEE Transactions on Smart Grid, 9(4), 3748–3762.

    Article  MATH  Google Scholar 

  25. Zhang, Y., Wang, Y., & Wang, X. (2012). Electricity bill capping for cloud-scale data centers that impact the power markets. In 2012 41st International Conference on Parallel Processing (ICPP) (pp. 440–449), Pittsburgh, PA, USA.

    Google Scholar 

  26. Li, S., Brocanelli, M., Zhang, W., & Wang, X. (2014). Integrated power management of data centers and electric vehicles for energy and regulation market participation. IEEE Transactions on Smart Grid, 5(5), 2283–2294.

    Article  MATH  Google Scholar 

  27. Yu, L., Jiang, T., & Zou, Y. (2016). Distributed online energy management for data centers and electric vehicles in smart grid. IEEE Internet of Things Journal, 3(6), 1373–1384.

    Article  MATH  Google Scholar 

  28. Cuffe, P., & Keane, A. (2015). Visualizing the electrical structure of power systems. IEEE Systems Journal, 11(3), 1810–1821.

    Article  MATH  Google Scholar 

  29. Fan, X., Weber, W. D., & Barroso, L. A. (2007). Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture news, 35(2), 13–23.

    Article  MATH  Google Scholar 

  30. Chen, M., Gao, C., Chen, S., Li, D., & Liu, Q. (2019). Bi-level economic dispatch modeling considering the load regulation potential of internet data centers. Proceedings of the CSEE, 39(5), 1301–1313.

    MATH  Google Scholar 

  31. Ye, Y., Qiu, D., Sun, M., Papadaskalopoulos, D., & Strbac, G. (2019). Deep reinforcement learning for strategic bidding in electricity markets. IEEE Transactions on Smart Grid, 11(2), 1343–1355.

    Article  MATH  Google Scholar 

  32. Sinha, A., & Shaikh, V. (2021). Solving bilevel optimization problems using kriging approximations. IEEE Transactions on Cybernetics, 52(10), 10639–10654.

    Article  MATH  Google Scholar 

  33. Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  34. Opara, K. R., & Arabas, J. (2019). Differential evolution: A survey of theoretical analyses. Swarm and Evolutionary Computation, 44, 546–558.

    Article  MATH  Google Scholar 

  35. Han, Z. H. (2016). Kriging surrogate model and its application to design optimization: A review of recent progress. Acta Aeronautica et Astronautica Sinica, 37(11), 3197–3225.

    MathSciNet  MATH  Google Scholar 

  36. Xiao, H., Pei, W., Dong, Z., Pu, T., Chen, N., & Li, K. (2018). Reactive power optimization of distribution system with distributed generation using metamodel-based global optimization method. Proceedings of the Chinese Society of Electrical Engineering, 38(3), 5751–5762.

    MATH  Google Scholar 

  37. Bouhlel, M. A., Hwang, J. T., Bartoli, N., Lafage, R., Morlier, J., & Martins, J. R. (2019). A Python surrogate modeling framework with derivatives. Advances in Engineering Software, 135, 102662.

    Article  MATH  Google Scholar 

  38. Santner, T. J., Williams, B. J., Notz, W. I., & Williams, B. J. (2003). The design and analysis of computer experiments (Vol. 1). Springer.

    Book  MATH  Google Scholar 

  39. Bouhlel, M. A., Bartoli, N., Otsmane, A., & Morlier, J. (2016). Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction. Structural and Multidisciplinary Optimization, 53, 935–952.

    Article  MathSciNet  MATH  Google Scholar 

  40. Tang, J., Wang, D., Jia, H., Zhang, Y., & Xiong, J. (2018). Optimal economic operation of active distribution networks based on hybrid algorithm of surrogate model and particle swarm optimization. Automation of Electric Power Systems, 42(4), 95–103.

    Google Scholar 

  41. Thereska, E., Donnelly, A., & Narayanan, D. (2011, April). Sierra: practical power-proportionality for data center storage. In Proceedings of the Sixth Conference on Computer Systems (pp. 169–182).

    Google Scholar 

  42. Baghzouz, Y., & Ertem, S. (1990). Shunt capacitor sizing for radial distribution feeders with distorted substation voltages. IEEE Transactions on Power Delivery, 5(2), 650–657.

    Article  Google Scholar 

  43. Ratnam, E. L., Weller, S. R., Kellett, C. M., & Murray, A. T. (2017). Residential load and rooftop PV generation: An Australian distribution network dataset. International Journal of Sustainable Energy, 36(8), 787–806.

    Article  MATH  Google Scholar 

  44. IESO. (2022). Generator output and capability. https://www.ieso.ca/en/Power-Data/Data-Directory. Accessed July 17, 2022.

  45. Jazzbin. (2018). The genetic and evolutionary algorithm toolbox with high performance in python. http://geatpy.com. Accessed February 12, 2022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Song .

Appendices

Appendix 4.1

First, the LEM clearing problem is converted into the standard form of the ADMM algorithm and then the iterative format of the optimization problem is obtained. Finally, the termination conditions of the iteration process are given.

  1. 1.

    Transformation of the optimization problem

Let \({\varvec{x}}_{\xi }^{\text{T}} = [{\varvec{x}}_{\xi ,1}^{\text{T}} ,\ldots,{\varvec{x}}_{\xi ,k}^{\text{T}} ,\ldots,{\varvec{x}}_{{\xi ,K_{\xi } }}^{\text{T}} ]\) represent the decision variables of all prosumers, where the decision variables of the k-th prosumer are described as follows:

$$x_{\xi ,k}^{T} = \left\{ {\begin{array}{*{20}l} {[m_{\xi ,1,t}^{{\text{IW}}} ,p_{\xi ,1,t}^{{\text{DC}}} ,p_{\xi ,1,t}^{{{\text{grid}} ,s}} ,p_{\xi ,1,t}^{{{\text{grid}} ,b}} ,p_{\xi ,1m,t}^{{\text{LEM}}} ]_{{m \in K_{\xi } ,t \in T}} } \hfill & {k = 1} \hfill \\ {[p_{\xi ,k,t}^{{\text{DG}}} ,p_{\xi ,k,t}^{{{\text{ESS}} ,ch}} ,p_{\xi ,k,t}^{{{\text{ESS}} ,dis}} ,p_{\xi ,k,t}^{{\text{FL}}} ,p_{\xi ,k,t}^{{{\text{grid}} ,s}} ,p_{\xi ,k,t}^{{{\text{grid}} ,b}} ,p_{\xi ,km,t}^{{\text{LEM}}} ]_{{m \in K_{\xi } ,t \in T}} } \hfill & {k = 2,3, \ldots ,K_{\xi } } \hfill \\ \end{array} } \right.$$
(4.40)
  1. (a)

    Convert the maximization problem to the minimization problem.

Define the function \(f_{\xi ,k}\) as follows:

$$f_{\xi ,k} \left( {x_{\xi ,k} } \right) = \left\{ {\begin{array}{*{20}l} {\sum\limits_{t = 1}^{T} {( - B_{\xi ,1,t}^{{\text{DC}}} - B_{\xi ,1,t}^{{\text{grid}}} + C_{\xi ,1,t}^{{{\text{net}}}} )} ,} \hfill & {k = {1}} \hfill \\ {\sum\limits_{t = 1}^{T} {(C_{\xi ,k,t}^{{\text{DG}}} + C_{\xi ,k,t}^{{{\text{ESS}}}} - U_{\xi ,k,t}^{{{\text{FL}}}} - B_{\xi ,k,t}^{{{\text{grid}}}} + C_{\xi ,k,t}^{{{\text{net}}}} )} ,} \hfill & {k = 2, \ldots ,K_{\xi } } \hfill \\ \end{array} } \right.$$
(4.41)

The optimization problem of LEM clearing is equivalent to

$$\begin{aligned} & \min \, \sum\limits_{k = 1}^{{K_{\xi } }} {f_{\xi ,k} } (x_{\xi ,k} ) \\ & {\text{s.t.}}\;\;(4.15) {-} (4.31) \\ \end{aligned}$$
(4.42)
  1. (b)

    Remove inequality constraints.

Define the extended real-valued function of \(f_{\xi ,k}\)

$$\tilde{f}_{\xi ,k} \left( {x_{\xi ,k} } \right) = \left\{ {\begin{array}{*{20}l} {f_{\xi ,k} (x_{\xi ,k} ),x_{\xi ,k} } \hfill & {{\text{constraints}}\;{\text{satisfied}}} \hfill \\ { + \, \infty ,x_{\xi ,k} } \hfill & {{\text{constraints}}\;{\text{not}}\;{\text{satisfied}}} \hfill \\ \end{array} } \right.$$
(4.43)

Putting the prosumers’ constraints implicitly in the objective function, the market optimization problem is equivalent to

$$\tilde{f}_{\xi ,k} \left( {x_{\xi ,k} } \right) = \left\{ {\begin{array}{*{20}l} {f_{\xi ,k} (x_{\xi ,k} ),x_{\xi ,k} } \hfill & {{\text{constraints}}\;{\text{satisfied}}} \hfill \\ { + \, \infty ,x_{\xi ,k} } \hfill & {{\text{constraints}}\;{\text{not}}\;{\text{satisfied}}} \hfill \\ \end{array} } \right.$$
(4.44)
  1. (c)

    Split local variables and global variables.

The \(p_{\xi ,km,t}^{{\text{LEM}}}\) in the above model is the local variable of the k-th prosumer. In the constraints, it is coupled with the local variable \(p_{\xi ,mk,t}^{{\text{LEM}}}\) of the m-th prosumer. In order to decompose the problem, the global variable \(h_{\xi ,km,t}\) is introduced, and the market power balance constraint are rewritten as:

$$\frac{{h_{\xi ,km,t} - h_{\xi ,mk,t} }}{2} - p_{\xi ,km,t}^{{\text{LEM}}} = {0}$$
(4.45)

By multiplying Δt, the market power balance constraint is changed into the electric energy balance constraint. Then the market optimization problem is finally expressed as follows:

$$\begin{aligned} & \min \, \sum\limits_{k = 1}^{{K_{\xi } }} {\tilde{f}_{\xi ,k} } (x_{\xi ,k} ) \\ & {\text{s.t.}}\;\;\left( {\frac{{h_{\xi ,km,t} - h_{\xi ,mk,t} }}{2} - p_{\xi ,km,t}^{{\text{LEM}}} } \right)\Delta t = {0} \\ \end{aligned}$$
(4.46)
  1. 2.

    Iterative format for optimization problems.

Define \({\varvec{H}}_{\xi }^{\text{T}} = [h_{\xi ,km,t} ](m \in K_{\xi } ,t \in T,k \in K_{\xi } )\).

Let \({\varvec{\Pi }}_{\xi }^{\text{T}} = [{\varvec{\Pi }}_{\xi ,1}^{\text{T}} , \ldots,{\varvec{\Pi }}_{\xi ,k}^{\text{T}} , \ldots,{\varvec{\Pi }}_{{\xi ,K_{\xi } }}^{\text{T}} ]\) denote the dual variable of all constraints, where \({\varvec{\Pi }}_{\xi ,k}^{\text{T}} = [\pi_{\xi ,km,t} ](m \in K_{\xi } ,t \in T,k \in K_{\xi } )\).

The augmented Lagrange function of the optimization problem is

$$L_{\rho ,\xi } ({\varvec{x}}_{\xi } ,{\varvec{H}}_{\xi } ,{\varvec{\Pi }}_{\xi } ) = \sum\limits_{k = 1}^{{K_{\xi } }} {L_{\rho ,\xi ,k} } ({\varvec{x}}_{\xi ,k} ,{\varvec{H}}_{\xi } ,{\varvec{\Pi }}_{\xi ,k} )$$
(4.47)

where

$$\begin{aligned} L_{\rho ,\xi ,k} ({\varvec{x}}_{\xi ,k} ,{\varvec{H}}_{\xi } ,{\varvec{\Pi }}_{\xi ,k} ) & = \tilde{f}_{\xi ,k} ({\varvec{x}}_{\xi ,k} ) + \sum\limits_{t = 1}^{T} {\sum\limits_{m = 1}^{{K_{\xi } }} {\left( {\pi_{\xi ,km,t} \left( {\frac{{h_{\xi ,km,t} - h_{\xi ,mk,t} }}{2} - p_{\xi ,km,t}^{{\text{LEM}}} } \right)} \right.} }\Delta t \\ & \quad + \left. {\frac{{\rho_{\xi } }}{2}\left( {\frac{{h_{\xi ,km,t} - h_{\xi ,mk,t} }}{2} - p_{\xi ,km,t}^{{\text{LEM}}} } \right)^{2}\Delta t^{2} } \right) \\ \end{aligned}$$
(4.48)

The iterative process of the ADMM algorithm is as follows

$$\begin{aligned} {\varvec{x}}_{\xi ,k}^{l + 1} & = \mathop {\arg \min }\limits_{{{{x}}_{\xi ,k} }} L_{\rho ,\xi ,k} ({\varvec{x}}_{\xi ,k} ,{\varvec{H}}_{\xi }^{l} ,{\varvec{\Pi }}_{\xi ,k}^{l} )h_{\xi ,km,t}^{l + 1} \\ & = \frac{{p_{\xi ,km,t}^{{{\text{LEM}} ,l + 1}} - p_{\xi ,mk,t}^{{{\text{LEM}} ,l + 1}} }}{2} - \frac{{\pi_{\xi ,km,t}^{l} - \pi_{\xi ,mk,t}^{l} }}{{2\rho_{\xi }\Delta t}}\pi_{\xi ,km,t}^{l + 1} \\ & = \pi_{\xi ,km,t}^{l} + \rho_{\xi } \left( {\frac{{h_{\xi ,km,t}^{l + 1} - h_{\xi ,mk,t}^{l + 1} }}{2} - p_{\xi ,km,t}^{{{\text{LEM}} ,l + 1}} } \right)\Delta t \\ \end{aligned}$$
(4.49)

Combining the 2nd and 3rd of the above formulas gives

$$\pi_{\xi ,km,t}^{l + 1} = - \rho_{\xi } \frac{{p_{\xi ,km,t}^{{{\text{LEM}} ,l + 1}} + p_{\xi ,mk,t}^{{{\text{LEM}} ,l + 1}} }}{2}\Delta t + \frac{{\pi_{\xi ,km,t}^{l} + \pi_{\xi ,mk,t}^{l} }}{2}$$
(4.50)

Thus

$$\pi_{\xi ,km,t}^{l + 1} - \pi_{\xi ,mk,t}^{l + 1} = 0$$
(4.51)

Choose an appropriate initial value so that \(\pi_{\xi ,km,t}^{0} - \pi_{\xi ,km,t}^{0} = 0\), then

$$\pi_{\xi ,km,t}^{l} - \pi_{\xi ,mk,t}^{l} = 0$$
(4.52)
$$h_{\xi ,km,t}^{l + 1} = \frac{{p_{\xi ,km,t}^{{{\text{LEM}} ,l + 1}} - p_{\xi ,mk,t}^{{{\text{LEM}} ,l + 1}} }}{2}$$
(4.53)

Therefore, the iterative process of ADMM algorithm can be expressed as

$$\begin{aligned} {\varvec{x}}_{\xi ,k}^{l + 1} & = \mathop {\arg \min }\limits_{{{\varvec{x}}_{\xi ,k} }} \left( {\tilde{f}_{\xi ,k} \left( {{\varvec{x}}_{\xi ,k} } \right)} \right. \\ & \quad + \sum\limits_{t = 1}^{T} {\sum\limits_{m = 1}^{{K_{\xi } }} ( } \pi_{\xi ,km,t}^{l} (\frac{{p_{\xi ,km,t}^{{{\text{LEM}} ,l}} - p_{\xi ,mk,t}^{{{\text{LEM}} ,l}} }}{2} - p_{\xi ,km,t}^{{\text{LEM}}} )\Delta t \\ & \quad + \left. {\frac{{\rho_{\xi } }}{2}\left( {\frac{{p_{\xi ,km,t}^{{{\text{LEM}} ,l}} - p_{\xi ,mk,t}^{{{\text{LEM}} ,l}} }}{2} - p_{\xi ,km,t}^{{\text{LEM}}} } \right)^{2}\Delta t^{2} } \right)\pi_{\xi ,km,t}^{l + 1} \\ & = \pi_{\xi ,km,t}^{l} - \rho_{\xi } \frac{{p_{\xi ,km,t}^{{{\text{LEM}} ,l + 1}} + p_{\xi ,mk,t}^{{{\text{LEM}} ,l + 1}} }}{2}\Delta t \\ \end{aligned}$$
(4.54)
  1. 3.

    The iteration termination condition of ADMM algorithm.

    $$\left\{ {\begin{array}{*{20}l} {\left\| {{\varvec{r}}^{l + 1} } \right\|_{2} \le \varepsilon^{{{\text{pri}}}} } \hfill \\ {\left\| {{\varvec{s}}^{l + 1} } \right\|_{2} \le \varepsilon^{{{\text{dual}}}} } \hfill \\ \end{array} } \right.$$
    (4.55)

Appendix 4.2

See Fig. 4.11 and Table 4.5.

Table 4.5 Prosumer’s electricity purchase/selling price from/to distribution system
Fig. 4.11
figure 11

Mean arrival rate of workloads

Appendix 4.3

See Figs. 4.12, 4.13, 4.14 and 4.15.

Fig. 4.12
figure 12

Convergence curve of ADMM algorithm

Fig. 4.13
figure 13

Operation optimization scheme of PV and FL at node 6

Fig. 4.14
figure 14

Operation optimization scheme of PV, ESS, and FL at node 8

Fig. 4.15
figure 15

LEM trading power and price of DC during 10:00–11:00

Appendix 4.4

See Fig. 4.16.

Fig. 4.16
figure 16

Profit changes of conventional prosumers with the proposed bi-level optimization

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, M., Gao, C., Yan, M., Yao, Y., Chen, T. (2025). Optimal Trading Strategy of Data-Center Prosumer in Multiple Local Energy Markets. In: Local Energy Markets. Springer, Singapore. https://doi.org/10.1007/978-981-97-9750-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-9750-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-9749-3

  • Online ISBN: 978-981-97-9750-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics