[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Nominal Compound Chain Extraction Enhanced by Chain-of-Thought Information

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15363))

  • 104 Accesses

Abstract

In traditional lexical chain extraction tasks, researchers typically focus on identifying simple lexical items based on surface grammatical relations, often overlooking compound words with underlying semantic frameworks. To address this limitation, the task of Nominal Compound Chain Extraction (NCCE) has emerged. This task aims to identify and cluster nominal compounds sharing the same semantic theme, thereby providing richer semantic information and facilitating a deeper understanding of the latent themes within documents. In this study, we fine-tune the large language model Qwen2-0.5b, employ data augmentation techniques, and introduce Chain-of-Thought (CoT) information from large models as an auxiliary aid, significantly enhancing the model’s document comprehension capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, J., et al.: Qwen technical report. arXiv preprint arXiv:2309.16609 (2023)

  2. Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: Qlora: efficient finetuning of quantized llms. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  4. Dong, Z., Dong, Q., Hao, C.: Hownet and its computation of meaning. In: Coling 2010: Demonstrations, pp. 53–56 (2010)

    Google Scholar 

  5. Ercan, G., Cicekli, I.: Using lexical chains for keyword extraction. Inf. Process. Manag. 43(6), 1705–1714 (2007)

    Article  Google Scholar 

  6. Fei, H., Ren, Y., Zhang, Y., Ji, D., Liang, X.: Enriching contextualized language model from knowledge graph for biomedical information extraction. Brief. Bioinf. 22(3), bbaa110 (2021)

    Google Scholar 

  7. Huang, L., et al.: A survey on hallucination in large language models: principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023)

  8. Li, B., Fei, H., Ren, Y., Ji, D.: Nominal compound chain extraction: a new task for semantic-enriched lexical chain. In: Zhu, X., Zhang, M., Hong, Yu., He, R. (eds.) NLPCC 2020. LNCS (LNAI), vol. 12430, pp. 119–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60450-9_10

    Chapter  Google Scholar 

  9. Li, C., Zhang, L., Zheng, Q., Zhao, Z., Chen, Z.: User preference prediction for online dialogue systems based on pre-trained large model. In: CCF International Conference on Natural Language Processing and Chinese Computing, pp. 349–357. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-44699-3_31

  10. Li, Z., Ding, N., Liu, Z., Zheng, H., Shen, Y.: Chinese relation extraction with multi-grained information and external linguistic knowledge. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4377–4386 (2019)

    Google Scholar 

  11. Liu, X., Luo, Z., Huang, H.: Jointly multiple events extraction via attention-based graph information aggregation. arXiv preprint arXiv:1809.09078 (2018)

  12. Mallick, C., Dutta, M., Das, A.K., Sarkar, A., Das, A.K.: Extractive summarization of a document using lexical chains. In: Nayak, J., Abraham, A., Krishna, B.M., Chandra Sekhar, G.T., Das, A.K. (eds.) Soft Computing in Data Analytics. AISC, vol. 758, pp. 825–836. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0514-6_78

    Chapter  Google Scholar 

  13. Rallapalli, S.: Interpretation of nominal compounds using structured knowledgebases. Computer Science & Engineering (M. Sc.) thesis. Hyderabad: LTRC, IIIT (2017)

    Google Scholar 

  14. Wei, J., et al.: Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural Inf. Process. Syst. 35, 24824–24837 (2022)

    Google Scholar 

  15. Yunpeng, Q., Wenling, W.: Using semantic model to build lexical chains. Data Anal. Knowl. Disc. 32(9), 34–41 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Zhang, L., Guo, H., Zheng, Q. (2025). Nominal Compound Chain Extraction Enhanced by Chain-of-Thought Information. In: Wong, D.F., Wei, Z., Yang, M. (eds) Natural Language Processing and Chinese Computing. NLPCC 2024. Lecture Notes in Computer Science(), vol 15363. Springer, Singapore. https://doi.org/10.1007/978-981-97-9443-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-9443-0_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-9442-3

  • Online ISBN: 978-981-97-9443-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics