[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Editing Personality For Large Language Models

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15360))

  • 87 Accesses

Abstract

This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs). This task seeks to adjust the models’ responses to opinion-related questions on specified topics since an individual’s personality often manifests in the form of their expressed opinions, thereby showcasing different personality traits. Specifically, we construct PersonalityEdit, a new benchmark dataset to address this task. Drawing on the theory in Social Psychology [10], we isolate three representative traits, namely Neuroticism, Extraversion, and Agreeableness, as the foundation for our benchmark. We then gather data using GPT-4, generating responses that align with a specified topic and embody the targeted personality trait. We conduct comprehensive experiments involving various baselines and discuss the representation of personality behavior in LLMs. Our findings uncover potential challenges of the proposed task, illustrating several remaining issues. We anticipate that our work can stimulate further annotation in model editing and personality-related research.

Code is available at https://github.com/zjunlp/EasyEdit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackerman, P.L., Heggestad, E.D.: Intelligence, personality, and interests: evidence for overlapping traits. Psychol. Bull. 121(2), 219 (1997)

    Article  Google Scholar 

  2. Akata, E., Schulz, L., Coda-Forno, J., et al.: Playing repeated games with large language models. CoRR abs/2305.16867 (2023)

    Google Scholar 

  3. et al., E.M.: Memory-based model editing at scale. In: ICML 2022, vol. 162, pp. 15817–15831 (2022)

    Google Scholar 

  4. Caron, G., Srivastava, S.: Manipulating the perceived personality traits of language models. In: Findings of EMNLP, Singapore, December 6-10, 2023, pp. 2370–2386

    Google Scholar 

  5. Costa, P.T., Jr., McCrae, R.R.: Domains and facets: hierarchical personality assessment using the revised neo personality inventory. J. Pers. Assess. 64(1), 21–50 (1995)

    Article  Google Scholar 

  6. DeYoung, C.G., Hirsh, J.B., Shane, M.S., Papademetris, X., Rajeevan, N., Gray, J.R.: Testing predictions from personality neuroscience: Brain structure and the big five. Psychol. Sci. 21(6), 820–828 (2010)

    Article  Google Scholar 

  7. Flekova, L., Gurevych, I.: Personality profiling of fictional characters using sense-level links between lexical resources. In: EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pp. 1805–1816 (2015)

    Google Scholar 

  8. Funder, D.C.: Accurate personality judgment. Current Directions in Psychological Sci. 21(3), 177–182 (2012). https://doi.org/10.1177/0963721412445309

  9. Goldberg, L.R.: Language and individual differences: the search for universals in personality lexicons. Rev. Personality Soc. Psychol. 2(1), 141–165 (1981)

    Google Scholar 

  10. Goldberg, L.R.: An alternative description of personality: the big-five factor structure. J. Pers. Soc. Psychol. 59(6), 1216 (1990)

    Article  Google Scholar 

  11. Hartvigsen, T., Sankaranarayanan, S., et al.: Aging with GRACE: lifelong model editing with discrete key-value adaptors. CoRR abs/2211.11031 (2022)

    Google Scholar 

  12. Helbig, D., Troiano, E., Klinger, R.: Challenges in emotion style transfer: An exploration with a lexical substitution pipeline. In: Proceedings of the Eighth International Workshop on Natural Language Processing for Social Media, SocialNLP@ACL 2020, Online, July 10, 2020, pp. 41–50

    Google Scholar 

  13. Hunston, S.: Corpus approaches to evaluation: Phraseology and evaluative language, vol. 13. Routledge (2010)

    Google Scholar 

  14. Jiang, G., Xu, M., Zhu, S., Han, W., Zhang, C., Zhu, Y.: MPI: evaluating and inducing personality in pre-trained language models. CoRR abs/2206.07550 (2022)

    Google Scholar 

  15. Jiang, H., Zhang, X., et al.: Personallm: investigating the ability of GPT-3.5 to express personality traits and gender differences. CoRR abs/2305.02547 (2023)

    Google Scholar 

  16. Jiang, H., Zhang, X., Choi, J.D.: Automatic text-based personality recognition on monologues and multiparty dialogues using attentive networks and contextual embeddings (student abstract). In: AAAI, pp. 13821–13822. AAAI Press (2020)

    Google Scholar 

  17. Jukic, J., Vukojevic, I., Snajder, J.: You are what you talk about: Inducing evaluative topics for personality analysis. In: Findings of EMNLP, 2022, pp. 3986–3999

    Google Scholar 

  18. Keh, S.S., Cheng, I.: Myers-briggs personality classification and personality-specific language generation using pre-trained language models. CoRR abs/1907.06333

    Google Scholar 

  19. Larson, L.M., et al.: Meta-analyses of big six interests and big five personality factors. J. Vocat. Behav. 61(2), 217–239 (2002)

    Article  Google Scholar 

  20. Li, X., Li, Y., et al.: Is GPT-3 a psychopath? evaluating large language models from a psychological perspective. CoRR abs/2212.10529 (2022)

    Google Scholar 

  21. Liu, A., Wang, A., Okazaki, N.: Semi-supervised formality style transfer with consistency training. In: ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 4689–4701 (2022)

    Google Scholar 

  22. Liu, Y., et al.: Roberta: A robustly optimized BERT pretraining approach. CoRR abs/1907.11692 (2019)

    Google Scholar 

  23. Madaan, A., et al., A.S.: Politeness transfer: A tag and generate approach. In: ACL 2020, Online, July 5-10, pp. 1869–1881 (2020)

    Google Scholar 

  24. Mallen, A., et al.: When not to trust language models: investigating effectiveness and limitations of parametric and non-parametric memories. CoRR abs/2212.10511 (2022)

    Google Scholar 

  25. Meng, K., et al.: Mass-editing memory in a transformer. CoRR abs/2210.07229

    Google Scholar 

  26. Meng, K., Bau, D., Andonian, A., Belinkov, Y.: Locating and editing factual associations in GPT. In: NeurIPS (2022)

    Google Scholar 

  27. Miotto, M., Rossberg, N., Kleinberg, B.: Who is GPT-3? an exploration of personality, values and demographics. In: Workshop on NLP+CSS, pp. 218–227 (2022)

    Google Scholar 

  28. Mitchell, E., et al.: Fast model editing at scale. In: ICLR 2022

    Google Scholar 

  29. Myers, I.B.: The myers-briggs type indicator: Manual (1962) (1962)

    Google Scholar 

  30. OpenAI: Gpt-4 technical report (2023)

    Google Scholar 

  31. Pan, K., Zeng, Y.: Do llms possess a personality? making the MBTI test an amazing evaluation for large language models. CoRR abs/2307.16180

    Google Scholar 

  32. Park, J.S., O’Brien, J.C., et al.: Generative agents: Interactive simulacra of human behavior. CoRR abs/2304.03442 (2023)

    Google Scholar 

  33. Pennebaker, J.W., King, L.A.: Linguistic styles: language use as an individual difference. J. Pers. Soc. Psychol. 77(6), 1296 (1999)

    Article  Google Scholar 

  34. Safdari, M., Serapio-García, G., Crepy, C., et al.: Personality traits in large language models. CoRR abs/2307.00184 (2023)

    Google Scholar 

  35. Schwartz, H.A., et al.: Personality, gender, and age in the language of social media: the open-vocabulary approach. PLoS ONE 8(9), e73791 (2013)

    Article  Google Scholar 

  36. Shanahan, M., et al.: Role-play with large language models. CoRR abs/2305.16367 (2023)

    Google Scholar 

  37. Stewart, R.D., et al.: The finer details? the predictability of life outcomes from big five domains, facets, and nuances. J. Pers. 90(2), 167–182 (2022)

    Article  Google Scholar 

  38. Touvron, H., et al.: Llama 2: Open foundation and fine-tuned chat models (2023)

    Google Scholar 

  39. Tu, Q., et al.: Characterchat: learning towards conversational AI with personalized social support. CoRR abs/2308.10278 (2023)

    Google Scholar 

  40. Wang, B., Komatsuzaki, A.: Gpt-j-6b: a 6 billion parameter autoregressive language model (2021). https://github.com/kingoflolz/mesh-transformer-jax

  41. Wang, P., Zhang, N., et al.: Easyedit: an easy-to-use knowledge editing framework for large language models. CoRR abs/2308.07269 (2023)

    Google Scholar 

  42. Wen, Z., et al.: Desprompt: personality-descriptive prompt tuning for few-shot personality recognition. Inf. Process. Manage. 60(5), 103422 (2023)

    Article  Google Scholar 

  43. Xi, Z., et al.: The rise and potential of large language model based agents: A survey. CoRR abs/2309.07864 (2023)

    Google Scholar 

  44. Yang, F., et al.: Learning to answer psychological questionnaire for personality detection. In: Findings of EMNLP 2021, pp. 1131–1142 (2021)

    Google Scholar 

  45. Yao, Y., et al.: Editing large language models: Problems, methods, and opportunities. CoRR abs/2305.13172 (2023)

    Google Scholar 

  46. Yao, Y., et al.: Knowledge rumination for pre-trained language models. CoRR abs/2305.08732 (2023)

    Google Scholar 

  47. Yao, Z., Yu, H.: Improving formality style transfer with context-aware rule injection. In: ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pp. 1561–1570 (2021)

    Google Scholar 

  48. Yin, X., et al.: History matters: temporal knowledge editing in large language model. CoRR abs/2312.05497 (2023)

    Google Scholar 

  49. Zhao, W.X., et al.: A survey of large language models. CoRR abs/2303.18223 (2023)

    Google Scholar 

  50. Zheng, C., et al.: Can we edit factual knowledge by in-context learning? CoRR abs/2305.12740 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningyu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, S. et al. (2025). Editing Personality For Large Language Models. In: Wong, D.F., Wei, Z., Yang, M. (eds) Natural Language Processing and Chinese Computing. NLPCC 2024. Lecture Notes in Computer Science(), vol 15360. Springer, Singapore. https://doi.org/10.1007/978-981-97-9434-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-9434-8_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-9433-1

  • Online ISBN: 978-981-97-9434-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics