[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SelfLoc: High Quality Unsupervised Object Localization with Self-Prompt SAM

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15042))

Included in the following conference series:

  • 94 Accesses

Abstract

Recently, self-supervised methods based on self-supervised transformer features have demonstrated promising results in unsupervised object localization. However, obtaining exceptional semantic results remains a formidable challenge. The current approaches heavily rely on the similarity between patch-level features within an image, while lacking supervision from image-level information. Meanwhile, the Segment Anything Model (SAM) has demonstrated remarkable class-agnostic segmentation capabilities for arbitrary objects in images with sparse prompts like points. In this work, we propose SelfLoc, a simple yet effective self-supervised object localization method via integration with self-prompt SAM. Specifically, a self-prompt generator is designed to automatically generate sparse prompts based on an image’s self-attention map. Simultaneously, an image-wise integration module is developed to enhance the coarse mask obtained from self-supervised features by leveraging the fine-grained segmentation results of SAM. Extensive experimental results demonstrate that the proposed method not only achieves state-of-the-art performance in unsupervised saliency detection and object discovery tasks, but also sets a new benchmark in unsupervised camouflaged object segmentation. The source code will be publicly available at https://github.com/Rogersiy/SelfLoc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 54.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  2. Chen, T., Mai, Z., Li, R., lun Chao, W.: Segment anything model (sam) enhanced pseudo labels for weakly supervised semantic segmentation (2023)

    Google Scholar 

  3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  4. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html

  5. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  6. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4548–4557 (2017)

    Google Scholar 

  7. Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2777–2787 (2020)

    Google Scholar 

  8. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners (2021). arXiv:2111.06377

  9. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  10. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., Dollár, P., Girshick, R.: Segment anything. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  11. Le, T.N., Nguyen, T.V., Nie, Z., Tran, M.T., Sugimoto, A.: Anabranch network for camouflaged object segmentation. Comput. Vis. Image Underst. 184, 45–56 (2019)

    Article  Google Scholar 

  12. Li, X., Lin, C.C., Chen, Y., Liu, Z., Wang, J., Raj, B.: Paintseg: training-free segmentation via painting (2023). arXiv:2305.19406

  13. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755. Springer (2014)

    Google Scholar 

  14. Lv, Y., Zhang, J., Barnes, N., Dai, Y.: Weakly-supervised contrastive learning for unsupervised object discovery (2023). arXiv:2307.03376

  15. Lv, Y., Zhang, J., Dai, Y., Li, A., Liu, B., Barnes, N., Fan, D.P.: Simultaneously localize, segment and rank the camouflaged objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11591–11601 (2021)

    Google Scholar 

  16. Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2014)

    Google Scholar 

  17. Melas-Kyriazi, L., Rupprecht, C., Laina, I., Vedaldi, A.: Deep spectral methods: A surprisingly strong baseline for unsupervised semantic segmentation and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8364–8375 (2022)

    Google Scholar 

  18. Nguyen, T., Dax, M., Mummadi, C.K., Ngo, N., Nguyen, T.H.P., Lou, Z., Brox, T.: Deepusps: deep robust unsupervised saliency prediction via self-supervision. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  19. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  20. Seitzer, M., Horn, M., Zadaianchuk, A., Zietlow, D., Xiao, T., Simon-Gabriel, C.J., He, T., Zhang, Z., Schölkopf, B., Brox, T., Locatello, F.: Bridging the gap to real-world object-centric learning. In: ICLR 2023 (2023)

    Google Scholar 

  21. Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2015)

    Article  Google Scholar 

  22. Shin, G., Albanie, S., Xie, W.: Unsupervised salient object detection with spectral cluster voting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3971–3980 (2022)

    Google Scholar 

  23. Siméoni, O., Puy, G., Vo, H.V., Roburin, S., Gidaris, S., Bursuc, A., Pérez, P., Marlet, R., Ponce, J.: Localizing objects with self-supervised transformers and no labels (2021). arXiv:2109.14279

  24. Siméoni, O., Sekkat, C., Puy, G., Vobecky, A., Zablocki, ., Pérez, P.: Unsupervised object localization: Observing the background to discover objects. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2023)

    Google Scholar 

  25. Skurowski, P., Abdulameer, H., Błaszczyk, J., Depta, T., Kornacki, A., Kozieł, P.: Animal camouflage analysis: Chameleon database (2018), unpublished manuscript

    Google Scholar 

  26. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vision 104, 154–171 (2013)

    Article  Google Scholar 

  27. Vo, H.V., Pérez, P., Ponce, J.: Toward unsupervised, multi-object discovery in large-scale image collections. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII 16, pp. 779–795. Springer (2020)

    Google Scholar 

  28. Vo, V.H., Sizikova, E., Schmid, C., Pérez, P., Ponce, J.: Large-scale unsupervised object discovery. Adv. Neural. Inf. Process. Syst. 34, 16764–16778 (2021)

    Google Scholar 

  29. Wang, L., Lu, H., Wang, Y., Feng, M., Wang, D., Yin, B., Ruan, X.: Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 136–145 (2017)

    Google Scholar 

  30. Wang, X., Yu, Z., De Mello, S., Kautz, J., Anandkumar, A., Shen, C., Alvarez, J.M.: FreeSOLO: learning to segment objects without annotations (2022). arXiv:2202.12181

  31. Wang, Y., Shen, X., Hu, S.X., Yuan, Y., Crowley, J.L., Vaufreydaz, D.: Self-supervised transformers for unsupervised object discovery using normalized cut. In: Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  32. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162 (2013)

    Google Scholar 

  33. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)

    Google Scholar 

  34. Zhang, Y., Wu, C.: Unsupervised camouflaged object segmentation as domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4334–4344 (2023)

    Google Scholar 

  35. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821 (2014)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Science and Technology Program of Qingdao (24-1-8-cspz-22-nsh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengke Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Wang, X., Li, C., Chen, L., Wang, S. (2025). SelfLoc: High Quality Unsupervised Object Localization with Self-Prompt SAM. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15042. Springer, Singapore. https://doi.org/10.1007/978-981-97-8858-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8858-3_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8857-6

  • Online ISBN: 978-981-97-8858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics