[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

CPE COIN++: Towards Optimized Implicit Neural Representation Compression Via Chebyshev Positional Encoding

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Abstract

COIN++ is a special variant of Implicit Neural Representation (INR), which encodes signals as modulations applied to the base INR network. It is becoming a promising method for applications in image compression. However, INR’s effectiveness is hindered by its inability to capture high-frequency details in the image representation. We propose a novel COIN++ framework using Chebyshev approximation to enhance high-frequency signal learning and image compression. In addition, we design an adaptable image partitioning technology and an integrated quantization method to further the image compression performance of COIN++ in the framework. Experiments demonstrate our framework significantly enhances both representational capacity and compression rate compared to the COIN++ baseline, with notable PSNR improvements.

Supported by the Natural Science Foundation of Fujian Province of China (No. 2021J01002) and Key Program of the National Natural Science Foundation of China Joint Fund (No. U23A20383).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 54.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://openi.pcl.ac.cn/PCL_AutoML/XBBO.

References

  1. Bai, Y., Yang, X., Liu, X., Jiang, J., Wang, Y., Ji, X., Gao, W.: Towards end-to-end image compression and analysis with transformers. AAAI 36(1), 104–112 (Jun 2022). https://doi.org/10.1609/aaai.v36i1.19884. https://ojs.aaai.org/index.php/AAAI/article/view/19884

  2. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. In: ICLR (2017)

    Google Scholar 

  3. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. In: ICLR (2018)

    Google Scholar 

  4. Bellard, F.: BPG image format (2015). https://bellard.org/bpg/

  5. Benbarka, N., Höfer, T., Zell, A., et al.: Seeing implicit neural representations as Fourier series. In: WCACV, pp. 2041–2050 (2022)

    Google Scholar 

  6. Burden, R.L., Faires, J.D., Burden, A.M.: Numerical Analysis. Cengage Learning, 9th edn. (2015)

    Google Scholar 

  7. Chen, F., Xu, Y., Wang, L.: Two-stage octave residual network for end-to-end image compression. In: AAAI, pp. 3922–3929 (2022)

    Google Scholar 

  8. Chen, Y., Wang, X.: Transformers as meta-learners for implicit neural representations. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13677. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_11

  9. Chmiel, B., Banner, R., Shomron, G., Nahshan, Y., Bronstein, A., Weiser, U., et al.: Robust quantization: one model to rule them all. NeurIPS 33, 5308–5317 (2020)

    Google Scholar 

  10. Dupont, E., Golinski, A., Alizadeh, M., Teh, Y.W., Doucet, A.: COIN: compression with implicit neural representations (2021). CoRR arXiv:abs/2103.03123

  11. Dupont, E., Loya, H., Alizadeh, M., Golinski, A., Teh, Y.W., Doucet, A.: COIN++: neural compression across modalities. Trans. Mach. Learn. Res. (2022)

    Google Scholar 

  12. Franzen, R.: Kodak lossless true color image suite. http://r0k.us/graphics/kodak/ (1999)

  13. Hong, C., Kim, H., Baik, S., Oh, J., Lee, K.M.: Daq: channel-wise distribution-aware quantization for deep image super-resolution networks. In: WCACV, pp. 2675–2684 (2022)

    Google Scholar 

  14. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  15. ITU-T, ISO/IEC: Advanced video coding (avc) standard (h.264). ITU-T Recommendation H.264 and ISO/IEC 14496-10 (2003)

    Google Scholar 

  16. ITU-T, ISO/IEC: High efficiency video coding (hevc) standard (h.265). ITU-T Recommendation H.265 and ISO/IEC 23008-2 (2013)

    Google Scholar 

  17. ITU-T, ISO/IEC: Versatile video coding (vvc) standard (h.266). ITU-T Recommendation H.266 and ISO/IEC 23090-3 (2020)

    Google Scholar 

  18. Jiang, X., Tan, W., Tan, T., Yan, B., Shen, L.: Multi-modality deep network for extreme learned image compression. In: AAAI, pp. 1033–1041 (2023)

    Google Scholar 

  19. Kim, C., Lee, D., Kim, S., Cho, M., Han, W.S.: Generalizable implicit neural representations via instance pattern composers. In: CVPR, pp. 11808–11817 (2023)

    Google Scholar 

  20. Lee, J., Tack, J., Lee, N., Shin, J.: Meta-learning sparse implicit neural representations. NeurIPS 34, 11769–11780 (2021)

    Google Scholar 

  21. Li, Y., Dong, X., Wang, W.: Additive powers-of-two quantization: an efficient non-uniform discretization for neural networks (2019). arXiv:1909.13144

  22. Martel, J.N., Lindell, D.B., Lin, C.Z., Chan, E.R., Monteiro, M., Wetzstein, G.: Acorn: adaptive coordinate networks for neural scene representation. ACM TOG 40(4), 1–13 (2021)

    Article  Google Scholar 

  23. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol. 12346. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

  24. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis (2020). arXiv:2003.08934v2

  25. Ramasinghe, S., Lucey, S.: Beyond periodicity: towards a unifying framework for activations in coordinate-MLPs. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13693. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_9

  26. Saragadam, V., Tan, J., Balakrishnan, G., Baraniuk, R.G., Veeraraghavan, A.: MINER: multiscale implicit neural representation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol. 13683. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20050-2_19

  27. Schwarz, J., Teh, Y.W.: Meta-learning sparse compression networks. J. Mach. Learn. Res. (2022)

    Google Scholar 

  28. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. NeurIPS 33, 7462–7473 (2020)

    Google Scholar 

  29. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program Evolvable Mach. 8, 131–162 (2007)

    Article  Google Scholar 

  30. Strümpler, Y., Postels, J., Yang, R., Gool, L.V., Tombari, F.: Implicit neural representations for image compression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV, pp. 74–91. Springer Nature Switzerland, Cham (2022)

    Google Scholar 

  31. Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J., Ng, R.: Fourier features let networks learn high frequency functions in low dimensional domains. NeurIPS 33, 7537–7547 (2020)

    Google Scholar 

  32. Taubman, D.S., Marcellin, M.W., Rabbani, M.: Jpeg 2000: image compression fundamentals, standards and practice. J. Electron. Imaging 11(2), 286–287 (2002)

    Article  Google Scholar 

  33. Trefethen, L.N.: Approximation Theory and Approximation Practice, Extended Edition. SIAM (2019)

    Google Scholar 

  34. Wallace, G.K.: The jpeg still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–xxxiv (1992)

    Google Scholar 

  35. Yamamoto, K.: Learnable companding quantization for accurate low-bit neural networks. In: CVPR, pp. 5029–5038 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Chao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, H. et al. (2025). CPE COIN++: Towards Optimized Implicit Neural Representation Compression Via Chebyshev Positional Encoding. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15039. Springer, Singapore. https://doi.org/10.1007/978-981-97-8692-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8692-3_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8691-6

  • Online ISBN: 978-981-97-8692-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics