[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Generalized Contrast-Adjustment Guided Growth Method for Medical Image Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15045))

Included in the following conference series:

  • 112 Accesses

Abstract

Data augmentation methods have proven effective in addressing the scarcity of training data. However, two unsolved challenges still limit their potential in medical image segmentation. Specifically, (1) existing data augmentation methods cannot establish the interaction between two tasks. They treat data augmentation and segmentation as two independent tasks, which ignores the inter-correlation. (2) They cannot enhance the weak boundary of utmost significance in medical image segmentation. Instead, they focus exclusively on increasing the number and diversity of training samples. We propose a novel and generalized contrast-adjustment guided growth method (CaGM) with two innovations to solve the above challenges. Specifically, (1) for the first time, the concept of growth method is proposed, which innovatively unifies the segmentation and augmentation into one framework, and establishes the inter-correlation between two tasks for boosting the segmentation. (2) A novel contrast-adjustment method is proposed, which enables boosting the contrast of boundaries and tackling the challenge of weak boundaries. Experimental results on two datasets and four baseline segmentation methods demonstrate that the CaGM has exhibited remarkable generality. The CaGM significantly improves segmentation performance and outperforms state-of-the-art data augmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 54.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, J., et al.: SDPN: a slight dual-path network with local-global attention guided for medical image segmentation. IEEE J. Biomed. Health Inform. 27, 2956–2967 (2023)

    Article  Google Scholar 

  2. Yuan, L., Liu, X., Yu, J., Li, Y.: A full-set tooth segmentation model based on improved pointnet++. Vis. Intell. 1(1) (2023)

    Google Scholar 

  3. Liu, C., Jiang, X., Ding, H.: Primitivenet: decomposing the global constraints for referring segmentation. Vis. Intell. 2 (2024)

    Google Scholar 

  4. Zhu, Q., Du, B., Yan, P.: Boundary-weighted domain adaptive neural network for prostate MR image segmentation. IEEE Trans. Med. Imaging 39(3), 753–763 (2019)

    Article  Google Scholar 

  5. Herzog, L., Murina, E., Dürr, O., Wegener, S., Sick, B.: Integrating uncertainty in deep neural networks for MRI based stroke analysis. Medical Image Anal. 65, 101790 (2020)

    Article  Google Scholar 

  6. Kofler, A., Dewey, M., Schaeffter, T., Wald, C., Kolbitsch, C.: Spatio-temporal deep learning-based undersampling artefact reduction for 2D radial cine MRI with limited training data. IEEE Trans. Medical Imaging 39(3), 703–717 (2020)

    Article  Google Scholar 

  7. LaLonde, R., Xu, Z., Irmakci, I., Jain, S., Bagci, U.: Capsules for biomedical image segmentation. Medical Image Anal. 68, 101889 (2021)

    Article  Google Scholar 

  8. Tam, C.M., Zhang, D., Chen, B., Peters, T.M., Li, S.: Holistic multitask regression network for multiapplication shape regression segmentation. Med. Image Anal. 65, 101783 (2020)

    Article  Google Scholar 

  9. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: Proceedings of International Conference on Learning Representations (2018)

    Google Scholar 

  10. Yun, S., Han, D., Chun, S., Oh, S.J., Yoo, Y., Choe, J.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of IEEE International Conference on Computer Vision, pp. 6022–6031 (2019)

    Google Scholar 

  11. Zhang, X., Liu, C., Ou, N., Zeng, X., Xiong, X., Yu, Y., Liu, Z., Ye, C.: CarveMix: a simple data augmentation method for brain lesion segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 13434, pp. 683–692 (2022)

    Google Scholar 

  12. Zhu, Q., Wang, Y., Yin, L., Yang, J., Liao, F., Li, S.: Selfmix: a self-adaptive data augmentation method for lesion segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 13434, pp. 683–692 (2022)

    Google Scholar 

  13. Hamghalam, M., Wang, T., Lei, B.: High tissue contrast image synthesis via multistage attention-GAN: application to segmenting brain MR scans. Neural Netw. 132, 43–52 (2020)

    Article  Google Scholar 

  14. Gilbert, A., et al.: Generating synthetic labeled data from existing anatomical models: an example with echocardiography segmentation. IEEE Trans. Medical Imaging 40(10), 2783–2794 (2021)

    Article  Google Scholar 

  15. Yu, Z., Han, X., Zhang, S., Feng, J., Peng, T., Zhang, X.-Y.: Mousegan++: unsupervised disentanglement and contrastive representation for multiple MRI modalities synthesis and structural segmentation of mouse brain. IEEE Trans. Med. Imaging 42(4), 1197–1209 (2023)

    Article  Google Scholar 

  16. Fan, C.-C., et al.: TR-GAN: multi-session future MRI prediction with temporal recurrent generative adversarial network. IEEE Trans. Med. Imaging 41(8), 1925–1937 (2022)

    Article  Google Scholar 

  17. Zhu, Q., Du, B., Yan, P.: Self-supervised training of graph convolutional networks. arXiv:2006.02380 (2020)

  18. Zhou, Z., Sodha, V., Pang, J., Gotway, M.B., Liang, J.: Models genesis. Med. Image Anal. 67, 101840 (2021)

    Article  Google Scholar 

  19. Chen, X., Zhang, Y., Wang, Y.: MTP: multi-task pruning for efficient semantic segmentation networks. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2022)

    Google Scholar 

  20. Li, X., Yu, L., Chen, H., Fu, C., Heng, P.: Semi-supervised skin lesion segmentation via transformation consistent self-ensembling model. In: British Machine Vision Conference. BMVA Press, p. 63 (2018)

    Google Scholar 

  21. Su, Y., Liu, Q., Xie, W., Hu, P.: YOLO-LOGO: a transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms. Comput. Methods Programs Biomed. 221, 106903 (2022)

    Article  Google Scholar 

  22. Li, X., Yu, L., Chen, H., Fu, C.-W., Xing, L., Heng, P.-A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 523–534 (2021)

    Article  Google Scholar 

  23. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  24. González Sánchez, J.C., Magnusson, M., Sandborg, M., Tedgren, Å.C., Malusek, A.: Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net. Phys. Med. 69, 241–247 (2020)

    Article  Google Scholar 

  25. Chen, C., Hammernik, K., Ouyang, C., Qin, C., Bai, W., Rueckert, D.: Cooperative training and latent space data augmentation for robust medical image segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 12903, pp. 149–159 (2021)

    Google Scholar 

  26. Cai, J.: Segmentation and diagnosis of liver carcinoma based on adaptive scale-kernel fuzzy clustering model for CT images. J. Med. Syst. 43(11), 322:1–322:11 (2019)

    Google Scholar 

  27. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 13,001–13,008 . AAAI Press (2020)

    Google Scholar 

  28. Wang, X., Wan, S., Jin, P.: Few-shot learning with random erasing and task-relevant feature transforming. In: International Conference on Artificial Neural Networks, vol. 12892, pp. 512–524. Springer (2021)

    Google Scholar 

  29. Su, S., Wang, H., Yang, M.: Suppressing style-sensitive features via randomly erasing for domain generalizable semantic segmentation. In: Proceedings of Chinese Conference on Pattern Recognition and Computer Vision, vol. 13022, pp. 300–311. Springer (2021)

    Google Scholar 

  30. Jamaludin, A., Kadir, T., Zisserman, A.: Spinenet: automated classification and evidence visualization in spinal MRIs. Med. Image Anal. 41, 63–73 (2017)

    Article  Google Scholar 

  31. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021)

    Article  Google Scholar 

  32. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. 38(1), 35–44 (2004)

    Article  Google Scholar 

  33. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J.S.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  34. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of International Conference on Learning Representations (2015)

    Google Scholar 

  35. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  36. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D Vision, pp. 565–571 (2016)

    Google Scholar 

  37. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M.C.H., Heinrich, M.P., Misawa, K.: Attention U-Net: learning where to look for the pancreas. CoRR. arXiv:1804.03999 (2018)

  38. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)

    Article  Google Scholar 

  39. Xu, W., Yang, H., Zhang, M., Pan, X., Liu, W., Yan, S.: Retinal vessel segmentation with VAE reconstruction and multi-scale context extractor. In: 19th IEEE International Symposium on Biomedical Imaging, pp. 1–5 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China 2023YFC2705700, National Natural Science Foundation of China under Grants (62225113, 62222112 and 62176186), the Innovative Research Group Project of Hubei Province under Grants 2024AFA017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongchao Xu or Bo Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Q., Zhu, Q., Xu, Y., Du, B. (2025). A Generalized Contrast-Adjustment Guided Growth Method for Medical Image Segmentation. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15045. Springer, Singapore. https://doi.org/10.1007/978-981-97-8499-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8499-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8498-1

  • Online ISBN: 978-981-97-8499-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics