Abstract
Accurately assessing the collateral circulation is critically essential for making acute ischemic stroke treatment plans. Current automatic methods usually rely on a single-stage CNN classifier, which typically requires a huge amount of data for training and thus struggles to cope with the challenge of limited data in clinical practice. To achieve an objective and efficient collateral circulation assessment under small datasets, we propose a two-stage automatic collateral scoring framework composed of a brain vessel segmentation and a scoring classifier. In the segmentation stage, we introduce an improved U-Net named BVU-Net, which can address the diverse and scattered brain vessel morphology in CTA images and achieve more precise segmentation results. In the assessment stage, we propose the Seg-based Vessel Indicator Set (SVIS), comprising four vessel quantification indicators extracted from the output masks of BVU-Net. Using SVIS, classifiers are evaluated on a small clinical dataset of 191 patients. The experiment results demonstrate that the proposed framework significantly outperforms single-stage CNN classifiers, showing substantial advantages and providing a valuable reference for clinical decision-making.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ants). Insight J. 2(365), 1–35 (2009)
Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., Group, B.D.C., et al.: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1), 313–327 (2011)
Fortunati, V., Su, J., Wolff, L., van Doormaal, P.J., Hofmeijer, J., Martens, J., Bokkers, R.P., van Zwam, W.H., van der Lugt, A., van Walsum, T.: Siamese model for collateral score prediction from computed tomography angiography images in acute ischemic stroke. Front. Neuroimaging 2, 1239703 (2024)
Gu, R., Wang, G., Song, T., Huang, R., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T., Zhang, S.: Ca-net: Comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans. Med. Imaging 40(2), 699–711 (2020)
Ibtehaz, N., Rahman, M.S.: Multiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)
Kuang, H., Wan, W., Wang, Y., Wang, J., Qiu, W.: Automated collateral scoring on ct angiography of patients with acute ischemic stroke using hybrid cnn and transformer network. Biomedicines 11(2), 243 (2023)
Lee, K., Sunwoo, L., Kim, T., Lee, K.J.: Spider u-net: Incorporating inter-slice connectivity using lstm for 3d blood vessel segmentation. Appl. Sci. 11(5), 2014 (2021)
Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B., et al.: Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)
Phipps, M.S., Cronin, C.A.: Management of acute ischemic stroke. BMJ 368 (2020)
Powers, W.J., Rabinstein, A.A., Ackerson, T., Adeoye, O.M., Bambakidis, N.C., Becker, K., Biller, J., Brown, M., Demaerschalk, B.M., Hoh, B., et al.: Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke 50(12), e344–e418 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, proceedings, part III 18, pp. 234–241. Springer (2015)
Scavasine, V.C., Stoliar, G.A., de Almeida Teixeira, B.C., Zétola, V.d.H.F., Lange, M.C.: Automated evaluation of collateral circulation for outcome prediction in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 33(4), 107584 (2024)
Shi, B., Gai, S., Darrell, T., Wang, X.: Toast: Transfer learning via attention steering. arXiv preprint arXiv:2305.15542 (2023)
Soler, L., Hostettler, A., Agnus, V., Charnoz, A., Fasquel, J.B., Moreau, J., Osswald, A.B., Bouhadjar, M., Marescaux, J.: 3d image reconstruction for comparison of algorithm database. https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01 (2010)
Su, J., Wolff, L., van Es, A.C.M., Van Zwam, W., Majoie, C., Dippel, D.W., Van der Lugt, A., Niessen, W.J., Van Walsum, T.: Automatic collateral scoring from 3d cta images. IEEE Trans. Med. Imaging 39(6), 2190–2200 (2020)
Wang, Z., Zheng, J.Q., Zhang, Y., Cui, G., Li, L.: Mamba-unet: Unet-like pure visual mamba for medical image segmentation. arXiv preprint arXiv:2402.05079 (2024)
Xiong, Y., Li, Z., Chen, Y., Wang, F., Zhu, X., Luo, J., Wang, W., Lu, T., Li, H., Qiao, Y., et al.: Efficient deformable convnets: Rethinking dynamic and sparse operator for vision applications. arXiv preprint arXiv:2401.06197 (2024)
Xu, S., Zheng, S., Xu, W., Xu, R., Wang, C., Zhang, J., Teng, X., Li, A., Guo, L.: Hcf-net: Hierarchical context fusion network for infrared small object detection. arXiv preprint arXiv:2403.10778 (2024)
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, pp. 3–11. Springer (2018)
Acknowledgment
This work was supported in part by the National Natural Science Foundation of China (grant number 61501297).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, T., Huang, H., Ma, Y., Huang, B., Lu, W., Xu, A. (2025). A Two-Stage Automatic Collateral Scoring Framework Based on Brain Vessel Segmentation. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15044. Springer, Singapore. https://doi.org/10.1007/978-981-97-8496-7_29
Download citation
DOI: https://doi.org/10.1007/978-981-97-8496-7_29
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8495-0
Online ISBN: 978-981-97-8496-7
eBook Packages: Computer ScienceComputer Science (R0)