[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Swin-HAUnet: A Swin-Hierarchical Attention Unet For Enhanced Medical Image Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15044))

Included in the following conference series:

  • 65 Accesses

Abstract

Medical image segmentation plays a pivotal role in computer-aided diagnosis and treatment planning. Traditional segmentation approaches often struggle to balance global and local context, either capturing overall anatomical structures or focusing on minute details, but not both. This paper introduces the Swin-Hierarchical Attention Unet (Swin-HAUnet), which harmonizes this dichotomy by integrating global contextual insights with local feature enhancement. The proposed network architecture employs a hybrid approach, leveraging an advanced transformer-based encoder to process wide-ranging contextual information and an attention-enhanced decoder to refine the segmentation of nuanced and intricate anatomical features. We performed experiments on two publicly available datasets, the Synapse multi-organ segmentation CT dataset and the UW-Madison dataset. The Swin-HAUnet shows a marked improvement in performance, achieving a Dice similarity coefficient of 79.91%, a notable increase of 1.26% over the baseline model on Synapse datasets. These results underscore the model’s effectiveness in complex segmentation tasks and the importance of attention mechanisms in medical image analysis.

Jiarong Chen, Xuyang Zhang, and Rongwen Li are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 54.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.synapse.org/#!Synapse:syn3193805/wiki/217789.

  2. 2.

    https://kaggle.com/competitions/uw-madison-gi-tract-image-segmentation.

References

  1. Cai, S., Tian, Y., Lui, H., Zeng, H., Wu, Y., Chen, G.: Dense-Unet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network. Quant. Imaging Med. Surg. 10(6), 1275 (2020)

    Article  Google Scholar 

  2. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: ECCV, pp. 205–218. Springer (2022)

    Google Scholar 

  3. Chang, Y., Menghan, H., Guangtao, Z., Xiao-Ping, Z.: Transclaw u-net: Claw u-net with transformers for medical image segmentation. arXiv preprint arXiv:2107.05188 (2021)

  4. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: learning dense volumetric segmentation from sparse annotation. In: MICCAI 2016, pp. 424–432. Springer (2016)

    Google Scholar 

  6. Ding, F., Yang, G., Liu, J., Wu, J., Ding, D., Xv, J., Cheng, G., Li, X.: Hierarchical attention networks for medical image segmentation. arXiv preprint arXiv:1911.08777 (2019)

  7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Fu, S., Lu, Y., Wang, Y., Zhou, Y., Shen, W., Fishman, E., Yuille, A.: Domain adaptive relational reasoning for 3d multi-organ segmentation. In: MICCAI 2020, pp. 656–666. Springer (2020)

    Google Scholar 

  9. Gumaei, A., Hassan, M.M., Hassan, M.R., Alelaiwi, A., Fortino, G.: A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access 7, 36266–36273 (2019)

    Article  Google Scholar 

  10. Hu, Q., Chen, Y., Xiao, J., Sun, S., Chen, J., Yuille, A.L., Zhou, Z.: Label-free liver tumor segmentation. In: Proceedings of the IEEE/CVF CVPR, pp. 7422–7432 (2023)

    Google Scholar 

  11. Liu, W., Li, D., Su, H.: Hana: Hierarchical attention network assembling for semantic segmentation. Cogn. Comput. 13(5), 1128–1135 (2021)

    Article  Google Scholar 

  12. Liu, Y., Wu, Y.H., Sun, G., Zhang, L., Chhatkuli, A., Van Gool, L.: Vision transformers with hierarchical attention. arXiv preprint arXiv:2106.03180 (2021)

  13. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  14. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  16. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: MICCAI 2015, pp. 234–241. Springer (2015)

    Google Scholar 

  18. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image segmentation using 3d fully convolutional deep networks. In: International Workshop on Machine Learning in Medical Imaging, pp. 379–387. Springer (2017)

    Google Scholar 

  19. Shu, Z., Entezari, A.: Sparse-view and limited-angle CT reconstruction with untrained networks and deep image prior. Comput. Methods Programs Biomed. 226, 107167 (2022)

    Article  Google Scholar 

  20. Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-net and its variants for medical image segmentation: A review of theory and applications. IEEE Access 9, 82031–82057 (2021)

    Article  Google Scholar 

  21. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  22. Wang, J., Zhou, P., Han, X., Chen, Y.: Medical image super-resolution via diagnosis-guided attention. In: 2023 IEEE International Conference on Multimedia and Expo (ICME), pp. 462–467 (2023)

    Google Scholar 

  23. Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., Wang, X.: Zoom-in-net: Deep mining lesions for diabetic retinopathy detection. In: MICCAI 2017, pp. 267–275. Springer (2017)

    Google Scholar 

  24. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: ECCV, pp. 3–19 (2018)

    Google Scholar 

  25. Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted res-unet for high-quality retina vessel segmentation. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 327–331. IEEE (2018)

    Google Scholar 

  26. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)

    Google Scholar 

  27. Yuan, Y., Zhang, L., Wang, L., Huang, H.: Multi-level attention network for retinal vessel segmentation. IEEE J. Biomed. Health Inform. 26(1), 312–323 (2021)

    Article  Google Scholar 

  28. Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph convolutional networks for 3d human pose regression. In: Proceedings of the IEEE/CVF CVPR, pp. 3425–3435 (2019)

    Google Scholar 

  29. Zhou, F., Luo, F., Efio-Akolly, K., Bbosa, R., Huang, W.C., Zou, J.N., Chen, Y.P.P., Liu, F.: Haunet-3d: a novel hierarchical attention 3D Unet for lung nodule segmentation. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1213–1220. IEEE (2021)

    Google Scholar 

  30. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: a nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 3–11. Springer (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China grants 62176001 and Natural Science Project of Anhui Provincial Education Department grants 2023AH030004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 37 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Zhang, X., Li, R., Zhou, P. (2025). Swin-HAUnet: A Swin-Hierarchical Attention Unet For Enhanced Medical Image Segmentation. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15044. Springer, Singapore. https://doi.org/10.1007/978-981-97-8496-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8496-7_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8495-0

  • Online ISBN: 978-981-97-8496-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics