[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Edge-Guided Bidirectional-Attention Residual Network for Polyp Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15044))

Included in the following conference series:

  • 87 Accesses

Abstract

Precise polyp segmentation provides important information in the early detection of colorectal cancer in clinical practice. However, it is a challenging task for two major reasons: 1) the color and texture of polyps are very similar to surrounding mucosa especially in the edge area; 2) the polyps often vary largely in scale, shape and location. To this end, we propose an edge-guided bidirectional-attention residual network (EBRNet) equipped with an edge-guided bidirectional-attention residual module (EBRM) and a context enrichment layer (CEL). The proposed EBRM focuses on both foreground and background regions for detail recovery and noise suppression to capture the camouflaged polyps in cluttered tissue, and introduces edge cues for accurate boundaries. The CEL enriches the contextual semantics in multiple levels to adaptively detect the polyps in various sizes, shapes and locations. Extensive experiments on five benchmark datasets demonstrate that our EBRNet performs favorably against most state-of-the-art methods under different evaluation metrics. The source code will be publicly available at https://github.com/LanhooNg/EBRNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 54.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, X., Zhang, L., Lu, H.: Automatic polyp segmentation via multi-scale subtraction network. Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent. 120–130 (2021)

    Google Scholar 

  2. Fan, D.P., et al.: PraNet: parallel reverse attention network for polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent. 263–273 (2020)

    Google Scholar 

  3. Brandao, P., et al.: Fully convolutional neural networks for polyp segmentation in colonoscopy. Progr. Biomed. Opt. Imag. Proc. SPIE 10134, 101–107 (2017)

    Google Scholar 

  4. Akbari, M., et al.: Polyp segmentation in colonoscopy images using fully convolutional network. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS), 69–72 (2018)

    Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent. 234–241 (2015)

    Google Scholar 

  6. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imag. 39(6), 1856–1867 (2019)

    Article  Google Scholar 

  7. Lou, A., Guan, S., Ko, H., Loew, M.H.: CaraNet: context axial reverse attention network for segmentation of small medical objects. Progr. Biomed. Opt. Imag. Proc. SPIE 12032, 81–92 (2022)

    Google Scholar 

  8. Jha, D., et al.: ResUNet++: an advanced architecture for medical image segmentation. Proc. IEEE Int. Symp. Multimed. (ISM), 225–2255 (2019)

    Google Scholar 

  9. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. Proc ACM Int Conf MultiMed. 451–462 (2020)

    Google Scholar 

  10. Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. (2017)

    Google Scholar 

  11. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imag. 35(2), 630–644 (2015)

    Google Scholar 

  12. Fang, Y., Chen, C., Yuan, Y., Tong, K.Y.: Selective feature aggregation network with area-boundary constraints for polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent. 302–310 (2019)

    Google Scholar 

  13. Zhang, R., Li, G., Li, Z., Cui, S., Qian, D., Yu, Y.: Adaptive context selection for polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent. 253–262 (2020)

    Google Scholar 

  14. Zhang, Y., Liu, H., Hu, Q.: Transfuse: fusing transformers and cnns for medical image segmentation. Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. 14–24 (2021)

    Google Scholar 

  15. Wang, J., Huang, Q., Tang, F., Meng, J., Su, J., Song, S.: Stepwise feature fusion: local guides global. Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. 110–120 (2022)

    Google Scholar 

  16. Duc, N.T., Oanh, N.T., Thuy, N.T., Triet, T.M., Dinh, V.S.: Colonformer: an efficient transformer based method for colon polyp segmentation. IEEE Access 10, 80 575–80 586 (2022)

    Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 3431–3440 (2015)

    Google Scholar 

  18. Sun, X., Zhang, P., Wang, D., Cao, Y., Liu, B.: Colorectal polyp segmentation by u-net with dilation convolution. Proc. IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), 851–858 (2019)

    Google Scholar 

  19. Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., Cui, S.: Shallow attention network for polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. 699–708 (2021)

    Google Scholar 

  20. Nguyen T.C., Nguyen, T.P., Diep, G.H., Tran-Dinh, A.H., Nguyen, T.V., Tran, M.T.: CCBANet: cascading context and balancing attention for polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. 633–643 (2021)

    Google Scholar 

  21. Tomar, N.K., Jha, D., Bagci, U., Ali, S.: TGANet: text-guided attention for improved polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. 151–160 (2022)

    Google Scholar 

  22. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. Proc. Eur. Conf. Comput. Vis. (ECCV), 3–19 (2018)

    Google Scholar 

  23. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929 (2020)

  24. Zhang, Q.L., Yang, Y.B.: SA-Net: shuffle attention for deep convolutional neural networks. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2235–2239 (2021)

    Google Scholar 

  25. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imag. Graph. 43, 99–111 (2015)

    Google Scholar 

  26. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014)

    Google Scholar 

  27. Kim, T., Lee, H., Kim, D.: UACANet: uncertainty augmented context attention for polyp segmentation. Proc. ACM Int. Conf. MultiMed. 2167–2175 (2021)

    Google Scholar 

  28. Yin, Z., Liang, K., Ma, Z., Guo, J.: Duplex contextual relation network for polyp segmentation. Proc. IEEE Int. Symp. Biomed. Imag. (ISBI). 1–5 (2022)

    Google Scholar 

  29. Dong, B., Wang, W., Fan, D.-P., Li, J., Fu, H., Shao, L.: Polyp-pvt: polyp segmentation with pyramid vision transformers. arXiv:2108.06932 (2021)

  30. Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., Zhang, D.: DS-TransUnet: dual swin transformer u-net for medical image segmentation. IEEE Trans. Instrum. Meas. 71, 1–15 (2022)

    Google Scholar 

  31. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Google Scholar 

  32. Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K.: Attentional feature fusion. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 3560–3569 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62376050, 62372080, 62172070, and U22B2052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongri Piao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, L., Zhang, M., Piao, Y., Li, Z., Lu, H. (2025). Edge-Guided Bidirectional-Attention Residual Network for Polyp Segmentation. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15044. Springer, Singapore. https://doi.org/10.1007/978-981-97-8496-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8496-7_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8495-0

  • Online ISBN: 978-981-97-8496-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics