Abstract
Precise polyp segmentation provides important information in the early detection of colorectal cancer in clinical practice. However, it is a challenging task for two major reasons: 1) the color and texture of polyps are very similar to surrounding mucosa especially in the edge area; 2) the polyps often vary largely in scale, shape and location. To this end, we propose an edge-guided bidirectional-attention residual network (EBRNet) equipped with an edge-guided bidirectional-attention residual module (EBRM) and a context enrichment layer (CEL). The proposed EBRM focuses on both foreground and background regions for detail recovery and noise suppression to capture the camouflaged polyps in cluttered tissue, and introduces edge cues for accurate boundaries. The CEL enriches the contextual semantics in multiple levels to adaptively detect the polyps in various sizes, shapes and locations. Extensive experiments on five benchmark datasets demonstrate that our EBRNet performs favorably against most state-of-the-art methods under different evaluation metrics. The source code will be publicly available at https://github.com/LanhooNg/EBRNet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhao, X., Zhang, L., Lu, H.: Automatic polyp segmentation via multi-scale subtraction network. Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent. 120–130 (2021)
Fan, D.P., et al.: PraNet: parallel reverse attention network for polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent. 263–273 (2020)
Brandao, P., et al.: Fully convolutional neural networks for polyp segmentation in colonoscopy. Progr. Biomed. Opt. Imag. Proc. SPIE 10134, 101–107 (2017)
Akbari, M., et al.: Polyp segmentation in colonoscopy images using fully convolutional network. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS), 69–72 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent. 234–241 (2015)
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imag. 39(6), 1856–1867 (2019)
Lou, A., Guan, S., Ko, H., Loew, M.H.: CaraNet: context axial reverse attention network for segmentation of small medical objects. Progr. Biomed. Opt. Imag. Proc. SPIE 12032, 81–92 (2022)
Jha, D., et al.: ResUNet++: an advanced architecture for medical image segmentation. Proc. IEEE Int. Symp. Multimed. (ISM), 225–2255 (2019)
Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. Proc ACM Int Conf MultiMed. 451–462 (2020)
Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthc. Eng. (2017)
Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imag. 35(2), 630–644 (2015)
Fang, Y., Chen, C., Yuan, Y., Tong, K.Y.: Selective feature aggregation network with area-boundary constraints for polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent. 302–310 (2019)
Zhang, R., Li, G., Li, Z., Cui, S., Qian, D., Yu, Y.: Adaptive context selection for polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent. 253–262 (2020)
Zhang, Y., Liu, H., Hu, Q.: Transfuse: fusing transformers and cnns for medical image segmentation. Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. 14–24 (2021)
Wang, J., Huang, Q., Tang, F., Meng, J., Su, J., Song, S.: Stepwise feature fusion: local guides global. Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. 110–120 (2022)
Duc, N.T., Oanh, N.T., Thuy, N.T., Triet, T.M., Dinh, V.S.: Colonformer: an efficient transformer based method for colon polyp segmentation. IEEE Access 10, 80 575–80 586 (2022)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 3431–3440 (2015)
Sun, X., Zhang, P., Wang, D., Cao, Y., Liu, B.: Colorectal polyp segmentation by u-net with dilation convolution. Proc. IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), 851–858 (2019)
Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., Cui, S.: Shallow attention network for polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. 699–708 (2021)
Nguyen T.C., Nguyen, T.P., Diep, G.H., Tran-Dinh, A.H., Nguyen, T.V., Tran, M.T.: CCBANet: cascading context and balancing attention for polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. 633–643 (2021)
Tomar, N.K., Jha, D., Bagci, U., Ali, S.: TGANet: text-guided attention for improved polyp segmentation. Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. 151–160 (2022)
Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. Proc. Eur. Conf. Comput. Vis. (ECCV), 3–19 (2018)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929 (2020)
Zhang, Q.L., Yang, Y.B.: SA-Net: shuffle attention for deep convolutional neural networks. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2235–2239 (2021)
Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imag. Graph. 43, 99–111 (2015)
Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014)
Kim, T., Lee, H., Kim, D.: UACANet: uncertainty augmented context attention for polyp segmentation. Proc. ACM Int. Conf. MultiMed. 2167–2175 (2021)
Yin, Z., Liang, K., Ma, Z., Guo, J.: Duplex contextual relation network for polyp segmentation. Proc. IEEE Int. Symp. Biomed. Imag. (ISBI). 1–5 (2022)
Dong, B., Wang, W., Fan, D.-P., Li, J., Fu, H., Shao, L.: Polyp-pvt: polyp segmentation with pyramid vision transformers. arXiv:2108.06932 (2021)
Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., Zhang, D.: DS-TransUnet: dual swin transformer u-net for medical image segmentation. IEEE Trans. Instrum. Meas. 71, 1–15 (2022)
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K.: Attentional feature fusion. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 3560–3569 (2021)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (62376050, 62372080, 62172070, and U22B2052).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wu, L., Zhang, M., Piao, Y., Li, Z., Lu, H. (2025). Edge-Guided Bidirectional-Attention Residual Network for Polyp Segmentation. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15044. Springer, Singapore. https://doi.org/10.1007/978-981-97-8496-7_18
Download citation
DOI: https://doi.org/10.1007/978-981-97-8496-7_18
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8495-0
Online ISBN: 978-981-97-8496-7
eBook Packages: Computer ScienceComputer Science (R0)