[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Generic and Scalable Detection of Risky Transactions Using Density Flows: Applications to Financial Networks

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14963))

  • 322 Accesses

Abstract

Algorithms based on dense subgraphs have been proven to be highly effective in detecting financial risks, but their widespread use has been hampered by well-design density metrics and high-quality solution of densest subgraph problems. Considering that flow is a natural representation of financial transactions, and the transactions in high-risk are often amount-dense, we propose to use density flows for risky transactions detection. However, trivially enumerating paths in a transfer graph is too costly. To tackle this problem, we design a novel combinatorial optimization solution, called MS-FRM. MS-FRM detects densest flow through “k-Hop density grap”, which is constructed by iteratively calculating densest flow with path length 1 to k for each node. During the iteration, a new and generic density metric is used to measure the weights of flows, and pruning is used to delete leaf nodes and reduce computation cost. The generic metric and k-Hop density graph detection make our algorithm suitable for the varieties of risky scenarios. Extensive experimental results on several real and synthetic datasets demonstrate the effectiveness of our approach compared to dense subgraph algorithms. To the best of our knowledge, this is the first work using density flow to detect risky transactions in financial networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://go.chainalysis.com/2023-crypto-crime-report.html.

  2. 2.

    https://github.com/BGT-M/spartan2.

  3. 3.

    https://github.com/riskytransactiondetection/MSFRM.

  4. 4.

    https://rekt.news/leaderboard/.

  5. 5.

    https://www.oklink.com/.

References

  1. Bartoletti, M., Pes, B., Serusi, S.: Data mining for detecting bitcoin Ponzi schemes. In: Proceedings of the Crypto Valley Conference on Blockchain Technology (CVCBT 2018), Zug, Switzerland, pp. 75–84. IEEE (2018)

    Google Scholar 

  2. Chen, T., Tsourakakis, C.E.: Antibenford subgraphs: unsupervised anomaly detection in financial networks. In: Proceedings of the 28th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD 2022), Washington, DC, USA, pp. 2762–2770. ACM (2022)

    Google Scholar 

  3. Chen, W., Guo, X., Chen, Z., Zheng, Z., Lu, Y.: Phishing scam detection on ethereum: towards financial security for blockchain ecosystem. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI 2020), Yokohama, Japan, pp. 4506–4512. ijcai.org (2020)

    Google Scholar 

  4. Dalal, S., Wang, Z., Sabharwal, S.: Identifying ransomware actors in the bitcoin network. arXiv preprint arXiv:2108.13807 (2021)

  5. Feng, W., Liu, S., Koutra, D., Shen, H., Cheng, X.: SpecGreedy: unified dense subgraph detection. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020, Part I. LNCS (LNAI), vol. 12457, pp. 181–197. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_11

    Chapter  Google Scholar 

  6. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: FRAUDAR: bounding graph fraud in the face of camouflage. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD 2016), San Francisco, CA, USA, pp. 895–904. ACM (2016)

    Google Scholar 

  7. Kanemura, K., Toyoda, K., Ohtsuki, T.: Identification of darknet markets’ bitcoin addresses by voting per-address classification results. In: IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), Seoul, Korea, pp. 154–158. IEEE (2019)

    Google Scholar 

  8. Li, Y., Zheng, Z., Dai, H.N.: Enhancing bitcoin price fluctuation prediction using attentive LSTM and embedding network. Appl. Sci. 10(14), 2076–3417 (2020)

    Article  Google Scholar 

  9. Liu, S., Hooi, B., Faloutsos, C.: Holoscope: topology-and-spike aware fraud detection. In: Proceedings of the 26th ACM International Conference on Information and Knowledge Management (CIKM 2017), Singapore, pp. 1539–1548. ACM (2017)

    Google Scholar 

  10. Lorenz, J., Silva, M.I., Aparício, D., Ascensão, J.T., Bizarro, P.: Machine learning methods to detect money laundering in the bitcoin blockchain in the presence of label scarcity. In: Proceedings of the first International Conference on AI in Finance (ICAIF 2020), New York, NY, USA, pp. 1–8. ACM (2020)

    Google Scholar 

  11. Ma, X., et al.: A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans. Knowl. Data Eng. 35(12), 12012–12038 (2021)

    Article  Google Scholar 

  12. Oliveira, C., Torres, J., Silva, M.I., Aparício, D., Ascensão, J.T., Bizarro, P.: Guiltywalker: distance to illicit nodes in the bitcoin network. arXiv preprint arXiv:2102.05373 (2021)

  13. Pereira, D.M., Couto, R.S.: Using degree centrality to identify market manipulation on bitcoin. In: Garcia-Alfaro, J., Muñoz-Tapia, J.L., Navarro-Arribas, G., Soriano, M. (eds.) DPM/CBT 2021. LNCS, vol. 13140, pp. 208–223. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93944-1_14

    Chapter  Google Scholar 

  14. Rajput, Q., Khan, N.S., Larik, A.S., Haider, S.: Ontology based expert-system for suspicious transactions detection. Comput. Inf. Sci. 7(1), 103–114 (2014)

    Google Scholar 

  15. Ranshous, S., et al.: Exchange pattern mining in the bitcoin transaction directed hypergraph. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 248–263. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_16

    Chapter  Google Scholar 

  16. Sun, X., et al.: CubeFlow: money laundering detection with coupled tensors. In: Karlapalem, K., Cheng, H., Ramakrishnan, N., Agrawal, R.K., Reddy, P.K., Srivastava, J., Chakraborty, T. (eds.) PAKDD 2021. LNCS (LNAI), vol. 12712, pp. 78–90. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75762-5_7

    Chapter  Google Scholar 

  17. Tallboys, J., Zhu, Y., Rajasegarar, S.: Identification of stock market manipulation with deep learning. In: Li, B., et al. (eds.) ADMA 2022. LNCS, vol. 13087, pp. 408–420. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95405-5_29

    Chapter  Google Scholar 

  18. Torres, C.F., Steichen, M., State, R.: The art of the scam: demystifying honeypots in ethereum smart contracts. In: the 28th USENIX Security Symposium (USENIX Security 2019), Santa Clara, CA, USA, pp. 1591–1607. USENIX (2019)

    Google Scholar 

  19. Weber, M., et al.: Anti-money laundering in bitcoin: experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)

  20. Wu, J., Liu, J., Chen, W., Huang, H., Zheng, Z., Zhang, Y.: Detecting mixing services via mining bitcoin transaction network with hybrid motifs. IEEE Trans. Syst. Man Cybernet. Syst. 52(4), 2237–2249 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author of this work is Weigang Wu. This work is partially supported by the Key-Area Research and Development Program of Guangdong Province No. 2020B0101090005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weigang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G., Qiao, Y., Zhou, J., Wu, W. (2024). Generic and Scalable Detection of Risky Transactions Using Density Flows: Applications to Financial Networks. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14963. Springer, Singapore. https://doi.org/10.1007/978-981-97-7238-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7238-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7237-7

  • Online ISBN: 978-981-97-7238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics