[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

MSCFNet: A Multi-scale Spatial and Channel Fusion Network for Geological Environment Remote Sensing Interpreting

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

With the rapid development of Geological Environment Remote Sensing (GERS) technology, accurately interpreting geological elements has become a critical task in the fields of geology and environmental science. To address the issue of low model interpretation accuracy caused by intra-class variation, inter-class similarity, and complex distribution in GERS, a new Multi-Scale Spatial and Channel Fusion Network MSCFNet, which consists of the Fine-grained Local feature Fusion (FLF) module, Multi-resolution Geological Context-Aware (MGCA) module, and Global Feature Aggregation (GFA) module, are proposed. A series of experiments on the GERS dataset of Northwest China have demonstrated the significant advantages of our approach. Compared with the mainstream semantic segmentation model, it has improved mPA by 3.1% and mIoU by 3.32%. Additionally, ablation experiments are performed to verify the performance enhancement of each module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, W., et al.: A survey of machine learning and deep learning in remote sensing of geological environment: challenges, advances, and opportunities. ISPRS J. Photogramm. Remote. Sens. 202, 87–113 (2023)

    Article  Google Scholar 

  2. Sikakwe, G.U.: Mineral exploration employing drones, contemporary geological satellite remote sensing and geographical information system (gis) procedures: A review. Remote Sensing Applications: Society and Environment, p. 100988 (2023)

    Google Scholar 

  3. Wu, X., et al.: Analysis of geological hazard susceptibility of landslides in muli county based on random forest algorithm. Sustainability 15(5), 4328 (2023)

    Article  Google Scholar 

  4. Geiß, C., Rabuske, A., Pelizari, P.A., Bauer, S., Taubenböck, H.: Selection of unlabeled source domains for domain adaptation in remote sensing. Array 15, 100233 (2022)

    Article  Google Scholar 

  5. Mumuni, A., Mumuni, F.: Data augmentation: a comprehensive survey of modern approaches. Array 16, 100258 (2022)

    Article  Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  7. Huang, Q., Fan, J., Xu, H., Han, W., Huang, X., Chen, Y.: Afenet: attention-guided feature enhancement network and a benchmark for low-altitude uav sewage outfall detection. Array 22, 100343 (2024)

    Article  Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Wang, S., Han, W., Huang, X., Zhang, X., Wang, L., Li, J.: Trustworthy remote sensing interpretation: concepts, technologies, and applications. ISPRS J. Photogramm. Remote. Sens. 209, 150–172 (2024)

    Article  Google Scholar 

  10. Xu, D., Chen, Y., Cui, N., Li, J.: Towards multi-dimensional knowledge-aware approach for effective community detection in lbsn. World Wide Web 26(4), 1435–1458 (2023)

    Article  Google Scholar 

  11. Haldar, N.A.H., et al.: Top-k socio-spatial co-engaged location selection for social users. IEEE Trans. Knowl. Data Eng. 35(5), 5325–5340 (2022)

    Google Scholar 

  12. Tang, Y., Li, J., Haldar, N.A.H., Guan, Z., Xu, J., Liu, C.: Reliability-driven local community search in dynamic networks. IEEE Trans. Knowl. Data Eng. (2023)

    Google Scholar 

  13. Sharma, V., Tripathi, A.K.: A systematic review of meta-heuristic algorithms in IoT based application. Array 14, 100164 (2022)

    Article  Google Scholar 

  14. Wang, S., Han, W., Zhang, X., Li, J., Wang, L.: Geospatial remote sensing interpretation: From perception to cognition. The Innovation Geoscience 2(1), 100056–1 (2024)

    Article  Google Scholar 

  15. Han, W., Li, J., Wang, S., Zhang, X., Dong, Y., Fan, R., Zhang, X., Wang, L.: Geological remote sensing interpretation using deep learning feature and an adaptive multisource data fusion network. IEEE Trans. Geosci. Remote. Sensing 60, 1–14 (2022)

    Google Scholar 

  16. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Google Scholar 

  17. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  18. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)

    Article  Google Scholar 

  19. Maulik, U., Chakraborty, D.: Remote sensing image classification: a survey of support-vector-machine-based advanced techniques. IEEE Geosci. Remote Sensing Magazine 5(1), 33–52 (2017)

    Article  Google Scholar 

  20. Abu El-Magd, S.A., Ali, S.A., Pham, Q.B.: Spatial modeling and susceptibility zonation of landslides using random forest, naïve bayes and k-nearest neighbor in a complicated terrain. Earth Sci. Inf. 14(3), 1227–1243 (2021)

    Article  Google Scholar 

  21. Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R.: Automated water extraction index: a new technique for surface water mapping using landsat imagery. Remote Sens. Environ. 140, 23–35 (2014)

    Article  Google Scholar 

  22. Sameen, M.I., Pradhan, B.: Landslide detection using residual networks and the fusion of spectral and topographic information. IEEE Access 7, 114363–114373 (2019)

    Article  Google Scholar 

  23. Yuan, X., Shi, J., Gu, L.: A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Syst. Appl. 169, 114417 (2021)

    Article  Google Scholar 

  24. Liu, J., Ban, W., Chen, Y., Sun, Y., Zhuang, H., Fu, E., Zhang, K.: Multi-dimensional CNN fused algorithm for hyperspectral remote sensing image classification. Zhongguo Jiguang/Chinese J. Lasers 48(16), 1–11 (2021)

    Google Scholar 

  25. Hamedianfar, A., Mohamedou, C., Kangas, A., Vauhkonen, J.: Deep learning for forest inventory and planning: a critical review on the remote sensing approaches so far and prospects for further applications. Forestry 95(4), 451–465 (2022)

    Article  Google Scholar 

  26. Zhang, J., Lin, S., Ding, L., Bruzzone, L.: Multi-scale context aggregation for semantic segmentation of remote sensing images. Remote Sens. 12(4), 701 (2020)

    Article  Google Scholar 

  27. Wang, S., Huang, X., Han, W., Li, J., Zhang, X., Wang, L.: Lithological mapping of geological remote sensing via adversarial semi-supervised segmentation network. Int. J. Appl. Earth Obs. Geoinf. 125, 103536 (2023)

    Google Scholar 

  28. Yang, J., Wu, C., Du, B., Zhang, L.: Enhanced multiscale feature fusion network for HSI classification. IEEE Trans. Geosci. Remote Sens. 59(12), 10328–10347 (2021)

    Article  Google Scholar 

  29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Comput. Vis. Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  30. Yuan, Y., Huang, L., Guo, J., Zhang, C., Chen, X., Wang, J.: Ocnet: object context for semantic segmentation. Int. J. Comput. Vis. 129(8), 2375–2398 (2021)

    Article  Google Scholar 

  31. Liu, Y., Shao, Z., Hoffmann, N.: Global attention mechanism: retain information to enhance channel-spatial interactions. arXiv preprint arXiv:2112.05561 (2021)

  32. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  33. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Comput. Vis. Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  34. Florian, L.C., Adam, S.H.: Rethinking atrous convolution for semantic image segmentation. In: IEEE Comput. Vis. Pattern Recognition, vol. 6 (2017)

    Google Scholar 

  35. Wu, T., Tang, S., Zhang, R., Cao, J., Zhang, Y.: Cgnet: a light-weight context guided network for semantic segmentation. IEEE Trans. Image Process. 30, 1169–1179 (2020)

    Article  Google Scholar 

  36. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  37. Wang, L., Li, R., Zhang, C., Fang, S., Duan, C., Meng, X., Atkinson, P.M.: Unetformer: a unet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote. Sens. 190, 196–214 (2022)

    Article  Google Scholar 

  38. Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., Sang, N.: Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation. Int. J. Comput. Vis. 129, 3051–3068 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

The work was supported by the National Natural Science Foundation of China under Grant 42201415; the Hubei Natural Science Foundation of China under Grant 2022CFB607.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, X. et al. (2024). MSCFNet: A Multi-scale Spatial and Channel Fusion Network for Geological Environment Remote Sensing Interpreting. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14963. Springer, Singapore. https://doi.org/10.1007/978-981-97-7238-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7238-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7237-7

  • Online ISBN: 978-981-97-7238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics