[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fusion of Multi-modal Information of User Profile Across Social Networks for User Identification

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14866))

Included in the following conference series:

  • 351 Accesses

Abstract

User identification across social networks uses various user information to determine whether two accounts from different social networks belong to the same user. The most intuitive method is to use user profiles to solve user identification across social networks. How to effectively learn the characteristics of user profiles is crucial. This paper proposes a model for user identification across social networks based on multi-modal information fusion of user profiles. First, the pre-trained model is used in deep learning to obtain the text feature vector and image feature vector of the user profile. This paper fused the multi-modal feature vectors in the user profile. Then, the feature vector sequence is fed into the bidirectional LSTM model with an attention mechanism. Finally, the probability result of user identification is obtained through Multilayer Perceptron. Experimental results show that the suggested technique outperforms state-of-the-art baselines when evaluated on three real-world datasets. Our approach outperforms solutions based on image pixel-level comparison regarding user identification challenges, thanks to the semantic feature mining of photos in user profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shu, K., Wang, S., Tang, J., et al.: User identity linkage across online social networks: a review. ACM SIGKDD Explor. Newsl. 18(2), 5–17 (2017)

    Article  Google Scholar 

  2. Cao, D., He, X., Nie, L., et al.: Cross-platform app recommendation by jointly modeling ratings and texts. ACM Trans. Inf. Syst. (TOIS) 35(4), 1–27 (2017)

    Google Scholar 

  3. Zafarani, R., Liu, H.: Connecting corresponding identities across communities. Proc. Int. AAAI Conf. Web Soc. Media 3(1), 354–357 (2009)

    Google Scholar 

  4. Agarwal, A., Toshniwal, D.: SmPFT: social media based profile fusion technique for data enrichment. Comput. Netw. 158, 123–131 (2019)

    Article  Google Scholar 

  5. Xing, L., Deng, K., Wu, H., et al.: Exploiting two-level information entropy across social networks for user identification. Wirel. Commun. Mob. Comput. 2021, 1–15 (2021)

    Article  Google Scholar 

  6. Shu, J., Shi, J., Liao, L.: Link prediction model for opportunistic networks based on feature fusion. IEEE Access 10, 80900–80909 (2022)

    Article  Google Scholar 

  7. Ma, T., Guo, L., Wang, X., et al.: Friend closeness based user matching cross social networks. Math. Biosci. Eng. 18(4), 4264–4292 (2021)

    Article  Google Scholar 

  8. Xing, L., Deng, K., Wu, H., et al.: Behavioral habits-based user identification across social networks. Symmetry 11(9), 1134 (2019)

    Google Scholar 

  9. Deng, K., Xing, L., Zheng, L., et al.: A user identification algorithm based on user behavior analysis in social networks. IEEE Access 7, 47114–47123 (2019)

    Article  Google Scholar 

  10. Chen, W., Wang, W., Yin, H., et al.: HFUL: a hybrid framework for user account linkage across location-aware social networks. VLDB J. 32(1), 1–22 (2023)

    Article  Google Scholar 

  11. He, W., Li, Y., Zhang, Y., et al.: A binary-search-based locality-sensitive hashing method for cross-site user identification. IEEE Trans. Comput. Soc. Syst. 10(2), 480–491 (2022)

    Article  Google Scholar 

  12. Zafarani, R., Liu, H.: Connecting corresponding identities across communities, Proc. Int. AAAI Conf. Web Soc. Media 3(1), 354–357 (2009)

    Google Scholar 

  13. Shu, K., Zhou, X., Wang, S., et al.: The role of user profiles for fake news detection. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 436–439 (2019)

    Google Scholar 

  14. Ranaldi, L., Zanzotto, F.M.: Hiding Your Face Is Not Enough: user identity linkage with image recognition. Soc. Netw. Anal. Min. 10, 1–9 (2020)

    Article  Google Scholar 

  15. Huang, Y., Zhao, P., Zhang, Q., et al.: A semantic-enhancement-based social network user-alignment algorithm. Entropy 25(1), 172 (2023)

    Google Scholar 

  16. Du, X., Chen, S., Liu, Z., et al.: Multiple userids identification with deep learning. Expert Syst. Appl. 207, 117924 (2022)

    Article  Google Scholar 

  17. Ye, C., Yang, J., Mao, Y.: User identification for knowledge graph construction across multiple online social networks. Alex. Eng. J. 73, 145–158 (2023)

    Article  Google Scholar 

  18. Pan, X., Ye, T., Han, D., et al.: Contrastive language-image pre-training with knowledge graphs. Adv. Neural. Inf. Process. Syst. 35, 22895–22910 (2022)

    Google Scholar 

  19. Radford, A., Kim, J.W., Hallacy, C., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, PMLR 2021, pp. 8748–8763 (2021)

    Google Scholar 

  20. Li, Y., Peng, Y., Zhang, Z., et al.: Matching user accounts across social networks based on username and display name. World Wide Web 22, 1075–1097 (2019)

    Article  Google Scholar 

  21. Zafarani, R., Tang, L., Liu, H.: User identification across social media. ACM Trans. Knowl. Discov. Data (TKDD) 10(2), 1–30 (2015)

    Article  Google Scholar 

  22. Li, Y., Peng, Y., Ji, W., et al.: User identification based on display names across online social networks. IEEE Access 5, 17342–17353 (2017)

    Article  Google Scholar 

  23. Li, Y., Cui, H., Liu, H., et al.: Display name-based anchor user identification across Chinese social networks. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3984–3989. IEEE (2020)

    Google Scholar 

  24. Li, Y., Liu, H.: DENA: display name embedding method for Chinese social network alignment. Neural Comput. Appl. 35(10), 7443–7461 (2023)

    Article  Google Scholar 

  25. Wang, M., Wang, W., Chen, W., et al.: EEUPL: towards effective and efficient user profile linkage across multiple social platforms. World Wide Web 24(5), 1731–1748 (2021)

    Article  Google Scholar 

  26. Wang, L., Hu, K., Zhang, Y., et al.: Factor graph model based user profile matching across social networks. IEEE Access 7, 152429–152442 (2019)

    Article  Google Scholar 

  27. Sharma, V., Dyreson, C.: LINKSOCIAL: linking user profiles across multiple social media platforms. In: 2018 IEEE International Conference on Big Knowledge (ICBK), pp. 260–267. IEEE (2018)

    Google Scholar 

  28. Halimi, A., Ayday, E.: Profile matching across online social networks. In: Proceedings of 22nd International Conference on Information and Communications Security (ICICS), pp. 54–70 (2020)

    Google Scholar 

  29. Halimi, A., Ayday, E.: Efficient quantification of profile matching risk in social networks using belief propagation. In: European Symposium on Research in Computer Security, pp. 110–130 (2020)

    Google Scholar 

  30. Peters, M., Neumann, M.E., Iyyer, M., et al.: Deep contextualized word representations, arXiv preprint arXiv:1802.05365 (2018)

  31. Radford, A., Narasimhan, K., Salimans, T., et al.: Improving language understanding by generative pre-training, p. 12 (2018). https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/languageunsupervised/language understanding paper.pdf

  32. Devlin, J., Chang, M.-W., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  33. Chen, S., Wang, J., Du, X., et al.: A novel framework with information fusion and neighborhood enhancement for user identity linkage. arXiv preprint arXiv:2003.07122 (2020)

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  35. Ye, C., Yang, J., Mao, Y.: FDHFUI: fusing deep representation and hand-crafted features for user identification. IEEE Trans. Consum. Electron. 70(1), 916–926 (2024)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, C., Yang, J., Mao, Y. (2024). Fusion of Multi-modal Information of User Profile Across Social Networks for User Identification. In: Huang, DS., Zhang, X., Guo, J. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14866. Springer, Singapore. https://doi.org/10.1007/978-981-97-5594-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5594-3_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5593-6

  • Online ISBN: 978-981-97-5594-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics