[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Central Feature Network Enables Accurate Detection of Both Small and Large Particles in Cryo-Electron Tomography

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14954))

Included in the following conference series:

  • 626 Accesses

Abstract

The advancements in Cryo-Electron Tomography (cryo-ET) have made it possible to visualize molecules in their natural cellular settings in three-dimensional space. Such visualizations play a crucial role in investigating the functions of biological entities under native conditions. Recently, deep learning techniques have proven effective in addressing the challenge of detecting particles in cryo-ET data. Nevertheless, the task of precisely identifying and categorizing multi-class molecules remains difficult due to factors such as the low signal-to-noise ratio and the diverse range of sizes in particle selection. In this study, we present a new framework called Central Feature Network (CFN) for detecting objects in 3D and implement it in cryo-ET analysis. A key strength of CFN is its ability to integrate central features across different scales, enabling the accurate detection of both small and large molecules. In comparison to existing methods, CFN enhances the F1 score for classification by \(3.6\%\), \(7.3\%\), \(6.6\%\), and \(5.1\%\) for the four smallest molecules tested, while maintaining similar or higher F1 scores for other molecules examined. Our code is available at https://github.com/Wangyaoyuu/cfn_scr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

    Article  Google Scholar 

  2. Che, C., Lin, R., Zeng, X., Elmaaroufi, K., Galeotti, J., Xu, M.: Improved deep learning-based macromolecules structure classification from electron cryo-tomograms. Mach. Vis. Appl. 29(8), 1227–1236 (2018)

    Article  Google Scholar 

  3. Chen, M., et al.: Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14(10), 983–985 (2017)

    Article  Google Scholar 

  4. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  5. Frangakis, A.S., et al.: Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl. Acad. Sci. 99(22), 14153–14158 (2002)

    Article  Google Scholar 

  6. Gubins, I., et al.: SHREC 2021: classification in cryo-electron tomograms. Eurographics Workshop on 3D Object Retrieval (2021). https://doi.org/10.2312/3DOR.20211307, https://diglib.eg.org/handle/10.2312/3dor20211307

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hrabe, T., Chen, Y., Pfeffer, S., Cuellar, L.K., Mangold, A.V., Förster, F.: PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178(2), 177–188 (2012)

    Article  Google Scholar 

  9. Ioannou, Y., Robertson, D., Cipolla, R., Criminisi, A.: Deep Roots: improving CNN efficiency with hierarchical filter groups. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1231–1240 (2017)

    Google Scholar 

  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  11. Liu, G., Niu, T., Qiu, M., Zhu, Y., Sun, F., Yang, G.: DeepETPicker: fast and accurate 3D particle picking for cryo-electron tomography using weakly supervised deep learning. Nat. Commun. 15(1), 2090 (2024)

    Article  Google Scholar 

  12. Min, Y., Liu, S., Lou, C., Cui, X.: Learning protein structural fingerprints under the label-free supervision of domain knowledge. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 69–74. IEEE (2018)

    Google Scholar 

  13. Moebel, E., et al.: Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nat. Methods 18(11), 1386–1394 (2021)

    Article  Google Scholar 

  14. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  15. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  16. Reva, B.A., Finkelstein, A.V., Skolnick, J.: What is the probability of a chance prediction of a protein structure with an rmsd of 6 å? Fold Des. 3(2), 141–147 (1998)

    Article  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Tolstikhin, I.O., et al.: MLP-mixer: an all-MLP architecture for vision. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  19. Xu, M., et al.: Deep learning-based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms. Bioinformatics 33(14), i13–i22 (2017)

    Article  Google Scholar 

  20. Yang, Z., Zhang, F., Han, R.: Self-supervised cryo-electron tomography volumetric image restoration from single noisy volume with sparsity constraint. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4056–4065 (2021).https://doi.org/10.1109/ICCV48922.2021.00402

  21. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  22. Zhang, C., et al.: TransPicker: a transformer-based framework for particle picking in cryoEM micrographs. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1179–1184. IEEE (2021)

    Google Scholar 

  23. Zhang, R., Zhu, F., Liu, J., Liu, G.: Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis. IEEE Trans. Inf. Forensics Secur. 15, 1138–1150 (2019)

    Article  Google Scholar 

  24. Zhidong, Y., Dawei, Z., Hongjia, L., Zhao, Z., Fa, Z., Renmin, H.: Self-supervised noise modeling and sparsity guided electron tomography volumetric image denoising. Ultramicroscopy 255, 113860 (2024). https://doi.org/10.1016/j.ultramic.2023.113860

    Article  Google Scholar 

  25. Zhou, B., Yu, H., Zeng, X., Yang, X., Zhang, J., Xu, M.: One-shot learning with attention-guided segmentation in cryo-electron tomography. Front. Mol. Biosciences, 473 (2021)

    Google Scholar 

  26. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Research and Development Program of China [2021YFF0704300], the National Science Foundation of China grant (No. 61932018, 62072441, 32241027, 62072283).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fa Zhang or Xuefeng Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wan, X., Chen, C., Zhang, F., Cui, X. (2024). Central Feature Network Enables Accurate Detection of Both Small and Large Particles in Cryo-Electron Tomography. In: Peng, W., Cai, Z., Skums, P. (eds) Bioinformatics Research and Applications. ISBRA 2024. Lecture Notes in Computer Science(), vol 14954. Springer, Singapore. https://doi.org/10.1007/978-981-97-5128-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5128-0_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5127-3

  • Online ISBN: 978-981-97-5128-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics