[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

HMGS: Hybrid Model of Gaussian Splatting for Enhancing 3D Reconstruction with Reflections

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15481))

Included in the following conference series:

  • 111 Accesses

Abstract

The advent of 3D Gaussian Splatting (3D-GS) marks a significant breakthrough in the field of 3D reconstruction, leveraging GPU rasterization technology to achieve real-time rendering with state-of-the-art quality. However, 3D-GS is limited by the capacity of low-order spherical harmonics to represent high-frequency reflective attributes, often resulting in the loss of critical information in scenes with highlights and reflections. To address this limitation, we propose HMGS, a hybrid model that enhances the original 3D-GS’s ability to capture reflective colors. Our approach employs a neural network to learn color components from both the camera viewing direction and the reflected light direction, which are then jointly trained with the original 3D-GS model. Furthermore, we introduce a smoothing loss for the viewing color component, effectively decoupling the two color components. Our method significantly improves the reconstruction performance of 3D-GS on datasets featuring metallic sheen, light reflections, and shadows, while also enhancing reconstruction quality on general datasets.

This work was supported by Chongqing Natural Science Foundation Innovation and Development Joint Fund CSTB2023NSCQ-LZX0109.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 89.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5855–5864 (2021)

    Google Scholar 

  2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5470–5479 (2022)

    Google Scholar 

  3. Cao, J., Li, Z., Wang, N., Ma, C.: Lightning nerf: Efficient hybrid scene representation for autonomous driving. arXiv preprint arXiv:2403.05907 (2024)

  4. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In: European Conference on Computer Vision. pp. 333–350. Springer (2022)

    Google Scholar 

  5. Chen, S., Bhalgat, Y., Li, X., Bian, J.W., Li, K., Wang, Z., Prisacariu, V.A.: Neural refinement for absolute pose regression with feature synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 20987–20996 (2024)

    Google Scholar 

  6. Chung, J., Oh, J., Lee, K.M.: Depth-regularized optimization for 3d gaussian splatting in few-shot images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 811–820 (2024)

    Google Scholar 

  7. Fan, Y., Skorokhodov, I., Voynov, O., Ignatyev, S., Burnaev, E., Wonka, P., Wang, Y.: Factored-neus: Reconstructing surfaces, illumination, and materials of possibly glossy objects. ArXiv abs/2305.17929 (2023), https://api.semanticscholar.org/CorpusID:258960329

  8. Fan, Z., Wang, K., Wen, K., Zhu, Z., Xu, D., Wang, Z.: Lightgaussian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint arXiv:2311.17245 (2023)

  9. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: Radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5501–5510 (2022)

    Google Scholar 

  10. Guédon, A., Lepetit, V.: Sugar: Surface-aligned gaussian splatting for efficient 3d mesh reconstruction and high-quality mesh rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5354–5363 (2024)

    Google Scholar 

  11. Huang, B., Yu, Z., Chen, A., Geiger, A., Gao, S.: 2d gaussian splatting for geometrically accurate radiance fields. arXiv preprint arXiv:2403.17888 (2024)

  12. Jiang, Y., Tu, J., Liu, Y., Gao, X., Long, X., Wang, W., Ma, Y.: Gaussianshader: 3d gaussian splatting with shading functions for reflective surfaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5322–5332 (2024)

    Google Scholar 

  13. Jung, J., Han, J., An, H., Kang, J., Park, S., Kim, S.: Relaxing accurate initialization constraint for 3d gaussian splatting. arXiv preprint arXiv:2403.09413 (2024)

  14. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics 42(4), 1–14 (2023)

    Article  Google Scholar 

  15. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking large-scale scene reconstruction. ACM Transactions on Graphics (ToG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  16. Li, M., Yao, S., Xie, Z., Chen, K., Jiang, Y.G.: Gaussianbody: Clothed human reconstruction via 3d gaussian splatting. arXiv preprint arXiv:2401.09720 (2024)

  17. Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. Adv. Neural. Inf. Process. Syst. 33, 15651–15663 (2020)

    Google Scholar 

  18. Lu, T., Yu, M., Xu, L., Xiangli, Y., Wang, L., Lin, D., Dai, B.: Scaffold-gs: Structured 3d gaussians for view-adaptive rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 20654–20664 (2024)

    Google Scholar 

  19. Lyu, X., Sun, Y.T., Huang, Y.H., Wu, X., Yang, Z., Chen, Y., Pang, J., Qi, X.: 3dgsr: Implicit surface reconstruction with 3d gaussian splatting. arXiv preprint arXiv:2404.00409 (2024)

  20. Malarz, D., Smolak, W., Tabor, J., Tadeja, S., Spurek, P.: Gaussian splatting with nerf-based color and opacity

    Google Scholar 

  21. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: Nerf in the wild: Neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 7210–7219 (2021)

    Google Scholar 

  22. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  23. Mubarik, M.H., Kanungo, R., Zirr, T., Kumar, R.: Hardware acceleration of neural graphics. In: Proceedings of the 50th Annual International Symposium on Computer Architecture. pp. 1–12 (2023)

    Google Scholar 

  24. Müller, T.: Tiny cuda neural network framework. Retrieved May 18, 2023 (2021)

    Google Scholar 

  25. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  26. Niedermayr, S., Stumpfegger, J., Westermann, R.: Compressed 3d gaussian splatting for accelerated novel view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10349–10358 (2024)

    Google Scholar 

  27. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  28. Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K.M., Tagliasacchi, A.: Derf: Decomposed radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14153–14161 (2021)

    Google Scholar 

  29. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 14335–14345 (2021)

    Google Scholar 

  30. Silva, M.C., Dahaghin, M., Toso, M., Del Bue, A.: Contrastive gaussian clustering: Weakly supervised 3d scene segmentation. arXiv preprint arXiv:2404.12784 (2024)

  31. Sitzmann, V., Rezchikov, S., Freeman, B., Tenenbaum, J., Durand, F.: Light field networks: Neural scene representations with single-evaluation rendering. Adv. Neural. Inf. Process. Syst. 34, 19313–19325 (2021)

    Google Scholar 

  32. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: ACM siggraph 2006 papers, pp. 835–846 (2006)

    Google Scholar 

  33. Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: Nerv: Neural reflectance and visibility fields for relighting and view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7495–7504 (2021)

    Google Scholar 

  34. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-nerf: Structured view-dependent appearance for neural radiance fields. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5481–5490. IEEE (2022)

    Google Scholar 

  35. Wang, F., Rakotosaona, M.J., Niemeyer, M., Szeliski, R., Pollefeys, M., Tombari, F.: Unisdf: Unifying neural representations for high-fidelity 3d reconstruction of complex scenes with reflections. arXiv preprint arXiv:2312.13285 (2023)

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  37. Weng, C.Y., Curless, B., Srinivasan, P.P., Barron, J.T., Kemelmacher-Shlizerman, I.: Humannerf: Free-viewpoint rendering of moving people from monocular video. In: Proceedings of the IEEE/CVF conference on computer vision and pattern Recognition. pp. 16210–16220 (2022)

    Google Scholar 

  38. Yan, Y., Lin, H., Zhou, C., Wang, W., Sun, H., Zhan, K., Lang, X., Zhou, X., Peng, S.: Street gaussians for modeling dynamic urban scenes. arXiv preprint arXiv:2401.01339 (2024)

  39. Yang, Z., Gao, X., Sun, Y., Huang, Y., Lyu, X., Zhou, W., Jiao, S., Qi, X., Jin, X.: Spec-gaussian: Anisotropic view-dependent appearance for 3d gaussian splatting. arXiv preprint arXiv:2402.15870 (2024)

  40. Ye, C., Nie, Y., Chang, J., Chen, Y., Zhi, Y., Han, X.: Gaustudio: A modular framework for 3d gaussian splatting and beyond. arXiv preprint arXiv:2403.19632 (2024)

  41. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 5752–5761 (2021)

    Google Scholar 

  42. Yu, M., Lu, T., Xu, L., Jiang, L., Xiangli, Y., Dai, B.: Gsdf: 3dgs meets sdf for improved rendering and reconstruction. arXiv preprint arXiv:2403.16964 (2024)

  43. Zhang, J., Zhan, F., Xu, M., Lu, S., Xing, E.: Fregs: 3d gaussian splatting with progressive frequency regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 21424–21433 (2024)

    Google Scholar 

  44. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 586–595 (2018)

    Google Scholar 

  45. Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.: Nerfactor: Neural factorization of shape and reflectance under an unknown illumination. ACM Transactions on Graphics (ToG) 40(6), 1–18 (2021)

    Article  Google Scholar 

  46. Zhou, X., Lin, Z., Shan, X., Wang, Y., Sun, D., Yang, M.H.: Drivinggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 21634–21643 (2024)

    Google Scholar 

  47. Zhu, H.: X-nerf: Explicit neural radiance field for multi-scene 360deg insufficient rgb-d views. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 5766–5775 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengliang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Wang, C., Liu, J., Jiang, T., Luo, Y., Xie, L. (2025). HMGS: Hybrid Model of Gaussian Splatting for Enhancing 3D Reconstruction with Reflections. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15481. Springer, Singapore. https://doi.org/10.1007/978-981-96-0972-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0972-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0971-0

  • Online ISBN: 978-981-96-0972-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics