[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Foundation Model-Powered 3D Few-Shot Class Incremental Learning via Training-Free Adaptor

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Abstract

Recent advances in deep learning for processing point clouds hold increased interest in Few-Shot Class Incremental Learning (FSCIL) for 3D computer vision. This paper introduces a new method to tackle the Few-Shot Continual Incremental Learning (FSCIL) problem in 3D point cloud environments. We leverage a foundational 3D model trained extensively on point cloud data. Drawing from recent improvements in foundation models, known for their ability to work well across different tasks, we propose a novel strategy that does not require additional training to adapt to new tasks. Our approach uses a dual cache system: first, it uses previous test samples based on how confident the model was in its predictions to prevent forgetting, and second, it includes a small number of new task samples to prevent overfitting. This dynamic adaptation ensures strong performance across different learning tasks without needing lots of fine-tuning. We tested our approach on datasets like ModelNet, ShapeNet, ScanObjectNN, and CO3D, showing that it outperforms other FSCIL methods and demonstrating its effectiveness and versatility. The code is available at https://github.com/ahmadisahar/ACCV_FCIL3D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 89.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Awais, M., Naseer, M., Khan, S., Anwer, R.M., Cholakkal, H., Shah, M., Yang, M.H., Khan, F.S.: Foundational models defining a new era in vision: A survey and outlook. arXiv preprint arXiv:2307.13721 (2023)

  2. Belouadah, E., Popescu, A.: Il2m: Class incremental learning with dual memory. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 583–592 (2019)

    Google Scholar 

  3. Belouadah, E., Popescu, A.: Scail: Classifier weights scaling for class incremental learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 1266–1275 (2020)

    Google Scholar 

  4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020)

    Google Scholar 

  5. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  6. Cao, X., Lu, H., Huang, L., Liu, X., Cheng, M.M.: Generative multi-modal models are good class incremental learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 28706–28717 (June 2024)

    Google Scholar 

  7. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 233–248 (2018)

    Google Scholar 

  8. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  9. Chen, K., Lee, C.G.: Incremental few-shot learning via vector quantization in deep embedded space. In: International Conference on Learning Representations (2021)

    Google Scholar 

  10. Cheraghian, A., Hayder, Z., Ramasinghe, S., Rahman, S., Jafaryahya, J., Petersson, L., Harandi, M.: Canonical shape projection is all you need for 3d few-shot class incremental learning. In: Computer Vision – ECCV 2024 (2024)

    Google Scholar 

  11. Cheraghian, A., Rahman, S., Fang, P., Roy, S.K., Petersson, L., Harandi, M.: Semantic-aware knowledge distillation for few-shot class-incremental learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  12. Cheraghian, A., Rahman, S., Ramasinghe, S., Fang, P., Simon, C., Petersson, L., Harandi, M.: Synthesized feature based few-shot class-incremental learning on a mixture of subspaces. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  13. Chowdhury, T., Cheraghian, A., Ramasinghe, S., Ahmadi, S., Saberi, M., Rahman, S.: Few-shot class-incremental learning for 3d point cloud objects. In: European Conference on Computer Vision. pp. 204–220. Springer (2022)

    Google Scholar 

  14. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: Pct: Point cloud transformer. Computational Visual Media (2021)

    Google Scholar 

  15. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.: Lora: Low-rank adaptation of large language models. In: International Conference on Learning Representations (2022), https://openreview.net/forum?id=nZeVKeeFYf9

  16. Kim, J., Ku, Y., Kim, J., Cha, J., Baek, S.: Vlm-pl: Advanced pseudo labeling approach for class incremental object detection via vision-language model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. pp. 4170–4181 (June 2024)

    Google Scholar 

  17. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on x-transformed points. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  18. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  19. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  20. Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional neural networks on riemannian manifolds. In: Proceedings of the IEEE International Conference on Computer Vision Workshops. pp. 37–45 (2015)

    Google Scholar 

  21. Mazumder, P., Singh, P., Rai, P.: Few-shot lifelong learning. In: AAAI (2021)

    Google Scholar 

  22. Peng, C., Zhao, K., Wang, T., Li, M., Lovell, B.C.: Few-shot class-incremental learning from an open-set perspective. In: European Conference on Computer Vision. pp. 382–397. Springer (2022)

    Google Scholar 

  23. Poulenard, A., Rakotosaona, M.J., Ponty, Y., Ovsjanikov, M.: Effective rotation-invariant point cnn with spherical harmonics kernels. In: Proceedings of the IEEE International Conference on 3D Vision (3DV) (2019)

    Google Scholar 

  24. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  25. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view cnns for object classification on 3d data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5648–5656 (2016)

    Google Scholar 

  26. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  27. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning. pp. 8748–8763. PMLR (2021)

    Google Scholar 

  28. Rao, Y., Lu, J., Zhou, J.: Spherical fractal convolutional neural networks for point cloud recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  29. Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny, D.: Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10901–10911 (2021)

    Google Scholar 

  30. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). pp. 945–953 (2015)

    Google Scholar 

  31. Sun, Q., Fang, Y., Wu, L., Wang, X., Cao, Y.: Eva-clip: Improved training techniques for clip at scale. arXiv preprint arXiv:2303.15389 (2023)

  32. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  33. Tan, Y., Xiang, X.: Cross-domain few-shot incremental learning for point-cloud recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). pp. 2307–2316 (January 2024)

    Google Scholar 

  34. Tan, Z., Ding, K., Guo, R., Liu, H.: Graph few-shot class-incremental learning. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (2022)

    Google Scholar 

  35. Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-incremental learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  36. Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, T., Yeung, S.K.: Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1588–1597 (2019)

    Google Scholar 

  37. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  38. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG) (2019)

    Google Scholar 

  39. Wu, W., Qi, Z., Fuxin, L.: Pointconv: Deep convolutional networks on 3d point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  40. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1912–1920 (2015)

    Google Scholar 

  41. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: Spidercnn: Deep learning on point sets with parameterized convolutional filters. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  42. Zhang, B., Yuan, J., Shi, B., Chen, T., Li, Y., Qiao, Y.: Uni3d: A unified baseline for multi-dataset 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9253–9262 (2023)

    Google Scholar 

  43. Zhang, R., Guo, Z., Zhang, W., Li, K., Miao, X., Cui, B., Qiao, Y., Gao, P., Li, H.: Pointclip: Point cloud understanding by clip. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8552–8562 (2022)

    Google Scholar 

  44. Zhang, R., Zhang, W., Fang, R., Gao, P., Li, K., Dai, J., Qiao, Y., Li, H.: Tip-adapter: Training-free adaptation of clip for few-shot classification. In: European Conference on Computer Vision. pp. 493–510. Springer (2022)

    Google Scholar 

  45. Zhang, Y., Rabbat, M.: A graph-cnn for 3d point cloud classification. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2018)

    Google Scholar 

  46. Zhang, Y., Zhou, K., Liu, Z.: What makes good examples for visual in-context learning? In: Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. (eds.) Advances in Neural Information Processing Systems. vol. 36, pp. 17773–17794. Curran Associates, Inc. (2023)

    Google Scholar 

  47. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  48. Zhou, D.W., Wang, F.Y., Ye, H.J., Ma, L., Pu, S., Zhan, D.C.: Forward compatible few-shot class-incremental learning. In: CVPR (2022)

    Google Scholar 

  49. Zhou, J., Wang, J., Ma, B., Liu, Y.S., Huang, T., Wang, X.: Uni3d: Exploring unified 3d representation at scale. In: International Conference on Learning Representations (ICLR) (2024)

    Google Scholar 

  50. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  51. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. International Journal of Computer Vision (IJCV) (2022)

    Google Scholar 

  52. Zhu, X., Zhang, R., He, B., Guo, Z., Zeng, Z., Qin, Z., Zhang, S., Gao, P.: Pointclip v2: Prompting clip and gpt for powerful 3d open-world learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 2639–2650 (2023)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the North South University (NSU) Conference Travel and Research Grants (CTRG) 2023–2024 (Grant ID: CTRG-23-SEPS-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Cheraghian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmadi, S. et al. (2025). Foundation Model-Powered 3D Few-Shot Class Incremental Learning via Training-Free Adaptor. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15481. Springer, Singapore. https://doi.org/10.1007/978-981-96-0972-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0972-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0971-0

  • Online ISBN: 978-981-96-0972-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics