[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Simple LTL Model Checking on Finite and Infinite Traces over Concrete Domains

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2024)

Abstract

There exist different semantics for Linear Temporal Logic (LTL) in terms of finiteness of the considered traces. Although several ones can be useful depending on the verification context, no verification framework handle their diversity in a simple way. Another limitation of current LTL verification tools is the treatment of concrete domains (bounded and infinite integers, real numbers, etc.). We present an approach to LTL model checking on both finite and infinite traces with concrete domains. Our method is based on an SMT solver and on Bounded Model Checking (BMC). We also present some experiments and compare our tool with NuSMV and nuXmv.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://crates.io/crates/tatam.

  2. 2.

    https://github.com/DavidD12/tatam/tree/main/files/icfem_2024.

References

  1. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 854–860. AAAI Press (2013)

    Google Scholar 

  2. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout, D.V.: Reasoning with temporal logic on truncated paths. In: International Conference on Computer Aided Verification (2003)

    Google Scholar 

  3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    Google Scholar 

  4. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Specification. Springer, Heidelberg (1991). https://doi.org/10.1007/978-1-4612-0931-7

    Book  Google Scholar 

  5. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking. In: CAV, Denmark, Copenhagen (2002)

    Google Scholar 

  6. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_22

    Chapter  Google Scholar 

  7. Macedo, N., Brunel, J., Chemouil, D., Cunha, A.: Pardinus: a temporal relational model finder. J. Autom. Reason. 66(4), 861–904 (2022)

    Article  MathSciNet  Google Scholar 

  8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, revised edn. MIT Press, Cambridge (2012)

    Google Scholar 

  9. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

    Google Scholar 

  10. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings of bounded LTL model checking. Logical Methods Comput. Sci. 2 (2006)

    Google Scholar 

  11. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)

    Article  Google Scholar 

  12. Pakonen, A.: Model-checking infinite-state nuclear safety I &C systems with nuXmv. In: 19th IEEE International Conference on Industrial Informatics, INDIN 2021, Palma de Mallorca, Spain, 21–23 July 2021, pp. 1–6. IEEE (2021)

    Google Scholar 

  13. Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 397–413. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_28

    Chapter  Google Scholar 

  14. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. Int. J. Softw. Tools Technol. Transf. 12(2), 123–137 (2010)

    Article  Google Scholar 

  15. Wulf, M.D. , Doyen, L., Maquet, N., Raskin, J.: Antichains: alternative algorithms for LTL satisfiability and model-checking. In: TACAS, Budapest (2008)

    Google Scholar 

  16. Li, J., Pu, G., Zhang, L., Vardi, M.Y., He, J.: Fast LTL satisfiability checking by SAT solvers. CoRR arxiv:1401.5677 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Doose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doose, D., Brunel, J. (2024). Simple LTL Model Checking on Finite and Infinite Traces over Concrete Domains. In: Ogata, K., Mery, D., Sun, M., Liu, S. (eds) Formal Methods and Software Engineering. ICFEM 2024. Lecture Notes in Computer Science, vol 15394. Springer, Singapore. https://doi.org/10.1007/978-981-96-0617-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0617-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0616-0

  • Online ISBN: 978-981-96-0617-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics