[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

We propose a generalisation of scale-space theory for scalar images. The starting point is the assumption that the conventional Gaussian model constitutes an unbiased (that is, task independent), multiscale image representation. A generalised scale-space is then considered as a conventional scale-space “in disguise”, representing the data in a format that is more convenient for specific applications. Although formally equivalent to the conventional representation (at least locally), a generalised representation may be more apt for a dedicated task. In particular, it may potentially solve the so-called “localisation problem” of linear scale-space. Several models based on nonlinear diffusion have emerged by the desire to deal with this problem. The proposed theory provides a unifying framework for a variety of such models that can be related to conventional scale-space in a one-to-one way.

Our defining constraint for a generalised scale-space is the requirement of equivalence: it should formally correspond to a transformation of linear scale-space. The key idea is a metric transform that preserves the intrinsic properties of the spatial domain. This allows one to regard a generalised scale-space as a strategy for reading out a single data representation. The equivalence constraint is shown to yidld a particular class of (linear or nonlinear) diffusion equations. Conventional, linear scale-space is a convenient representative of the equivalence class for “universal” purposes. The emphasis is on nonlinear scale-spaces, although the principle of equivalence can be used within the linear context as well. Examples are included to illustrate the theory both in the linear as well as in the nonlinear sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Florack, L.M.J., Salden, A.H., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A. (1994). Nonlinear Scale-Space. In: ter Haar Romeny, B.M. (eds) Geometry-Driven Diffusion in Computer Vision. Computational Imaging and Vision, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1699-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1699-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4461-7

  • Online ISBN: 978-94-017-1699-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics