[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Sperner Families and Partitions of A Partially Ordered Set

  • Conference paper
Combinatorics

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 16))

Abstract

This paper is a summary (without proofs) of the main results in a series of papers by the author and D.J. Kleitman [14] and the author [11, 12, 13] concerning subsets of a finite partially ordered set called Sperner k-families. If P is a finite partially ordered set, a subset A ⊆ P is a k-family if A contains no chains of length k+1 (or, equivalently, if A can be expressed as the union of k 1-families in P). Maximum-sized k-families are called Sperner k-families of P.

Supported in part by ONR N00014-67-A-0204-0063.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 56.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berge, C., Färbung von Graphen deren samtliche bzw. ungerade Kreise starr sind (Zusammenfassung), Wiss. Z. Martin Luther Univ. Halle Wittenberg, Math. Nat. Reihe, 1961, pp. 114.

    Google Scholar 

  2. Birkhoff, G., Lattice theory, AMS Coll. Publ. 25, Amer. Math. Soc., Providence, 1967.

    MATH  Google Scholar 

  3. Brualdi, R., Induced matroids, Proc. Amer. Math. Soc., 29 (1971) 213–221.

    Article  MathSciNet  MATH  Google Scholar 

  4. Dilworth, R.P., A decomposition theorem for partially ordered sets, Ann. of Math., 51 (1950) 161–166.

    Article  MathSciNet  MATH  Google Scholar 

  5. Dilworth, R.P., Some combinatorial problems on partially ordered sets, in: Combinatorial analysis, R. Bellman & M. Hall Jr. (eds.), Proc. Symp. Appl. Math., Amer. Math. Soc., Providence, 1960, pp. 85–90.

    Google Scholar 

  6. Edmonds, J., Submodular functions, matroids and certain polyhedra, in: Combinatorial structures and their applications, Proc. Calgary Internat. Conference 1969, Gordon and Breach, New York, 1970, pp. 69.

    Google Scholar 

  7. Erdös, P., On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc., 51 (1945) 898–902.

    Article  MathSciNet  MATH  Google Scholar 

  8. Freese, R., An application of Dilworth’s lattice of maximal antichains, Discrete Math., 7 (1974) 107–109.

    Article  MathSciNet  MATH  Google Scholar 

  9. Fulkerson, D.R., A note on Dilworth’s theorem for partially ordered sets, Proc. Amer. Math. Soc., 7 (1956) 701–702.

    MathSciNet  MATH  Google Scholar 

  10. Fulkerson, D.R., Anti-blocking polyhedra, J. Combinatorial Theory B, 12 (1972) 50–71.

    Article  MathSciNet  MATH  Google Scholar 

  11. Greene, C., An extension of Schensted’s theorem, to appear.

    Google Scholar 

  12. Greene, C., Partitions and conjugate partitions of a partially ordered set, to appear.

    Google Scholar 

  13. Greene, C., Construction of Sperner k-families and k-saturated partitions, to appear.

    Google Scholar 

  14. Greene, C. & D.J. Kleitman, On the structure of Sperner k-families, to appear.

    Google Scholar 

  15. Kleitman, D.J., M. Edelberg & D. Lubell, Maximal sized antichains in partial orders, Discrete Math., 1 (1971) 47–53.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lovász, L., Normal hypergraphs and the perfect graph conjecture, Discrete Math., 2 (1972) 253–267.

    Article  MathSciNet  MATH  Google Scholar 

  17. Schensted, C., Longest increasing and decreasing subsequences, Canad. J. Math., 13 (1961) 179–191.

    Article  MathSciNet  MATH  Google Scholar 

  18. Sperner, E., Ein Satz über Untermengen einer endlichen Menge, Math. Z., 27 (1928) 544–548.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Hall Jr. J. H. van Lint

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Mathematical Centre, Amsterdam

About this paper

Cite this paper

Greene, C. (1975). Sperner Families and Partitions of A Partially Ordered Set. In: Hall, M., van Lint, J.H. (eds) Combinatorics. NATO Advanced Study Institutes Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1826-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1826-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1828-9

  • Online ISBN: 978-94-010-1826-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics