Abstract
A LabVIEW based data acquisition system (LV-DAS) is developed for Electrical Impedance Tomography (EIT) for automatic current injection and boundary data collection. The developed LV-DAS consists of a NIUSB-6251 DAQ card, NISCB-68 connector module and an automatic electrode switching module (A-ESM). A LabVIEW based graphical user interface (LV-GUI) is develop to control the current injection and data acquisition by LV-DAS through A-ESM. Boundary data are collected for a number of practical phantoms and the boundary data profiles are studied to assess the LV-DAS. Results show that the high resolution NIDAQ card of the DAS improves its data acquisition performance with accurate measurement and high signal to noise ratio (SNR).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Webster, J.G.: Electrical Impedance Tomography. Adam Hilger Series of Biomedical Engineering, Adam Hilger, New York (1990)
Bera, T.K., Nagaraju, J.: Electrical Impedance Tomography (EIT): A Harmless Medical Imaging Modality. Research Developments in Computer Vision and Image Processing: Methodologies and Applications, Chap. 13, pp. 224–262. IGI Global, USA (2013)
Wanga, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46, 2845–2853 (2013)
Bera, T.K., Nagaraju, J.: Studies on the thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Measurement. 47, 264–286 (2014). Impact Factor: 1.130
Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications, 1st edn. Institute of Physics Publishing Ltd., UK (2005)
Bera, T.K., Nagaraju, J.: A MATLAB based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J. Med. Eng. 15 (2013) (Article ID 193578)
Bera, T.K., Nagaraju, J.: Elemental resistivity profile analysis of EIT images to assess the reconstructed image quality. Int. J. Inf. Process. 7(1), 1–14 (2013)
Bushberg, J.T., Seibert, J.A., Leidholdt Jr., E.M., Boone, J.M.: The Essential Physics of Medical Imaging, 3rd edition. Lippincott Williams & Wilkins; Third, North American Edition edition (20 Dec 2011)
Hiller, J., Reindl, L.M.: A computer simulation platform for the estimation of measurement uncertainties in dimensional X-ray computed tomography. Measurement 45(8), 2166–2182 (2012)
Davis, J., Wells, P.: Computed tomography measurements on wood. Ind. Metrol. 2(3–4), 195–218 (1992)
Bera, T.K., Nagaraju, J.: Sensors for electrical impedance tomography. In: Webster, J.G. (ed.) The Measurement, Instrumentation, and Sensors Handbook, 2nd edition. CRC Press, Boca Raton, Chap. 61, pp. 61-1–61-30 (2014)
Lionheart, W.R.B.: EIT reconstruction algorithms: pitfalls, challenges and recent developments. Review Article, Physiol. Meas. 25, 125–142. PII: S0967-3334(04)70421-9 (2004)
Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT: a simulation study. J. Electr. Bioimp. 2, 33–47 (2011)
Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J. Electr. Bioimp. 2, 2–12 (2011)
Bera, T.K., Nagaraju, J.: Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomography. Measurement 44(3), 518–526 (2011)
Kerner, T.E., Williams, D.B., Osterman, K.S., Reiss, F.R., Hartov, A., Paulsen, K.D.: Electrical impedance imaging at multiple frequencies in phantoms. Physiol. Meas. 21, 67–77 (2000)
Griffiths, H.: A cole phantom for EIT. Physiol. Meas. 16(1995), A29–A38 (1995)
Kim, B.S., Kim, K.Y., Kao, T.J., Newell, J.C., Isaacson, D., Saulnier, G.J.: Dynamic electrical impedance imaging of a chest phantom using the Kalman filter. Physiol. Meas. 27(5), S81–S91 (2006)
Kimoto, A., Shida, K.: Imaging of temperature-change distribution in the brain phantom by means of capacitance measurement. IEEE Trans. Instrum. Measur. 49(3), 591–595 (2000)
Li, Yi: Manucher soleimani imaging conductive materials with high frequency electrical capacitance tomography. Measurement 46, 3355–3361 (2013)
Sadleiry, R., Foxz, R.: Quantification of blood volume by electrical impedance tomography using a tissue-equivalent phantom. Physiol. Meas. 19, 501–516 (1998)
Holder, D.S., Khan, A.: Use of polyacrylamide gels in a saline-filled tank to determine the linearity of the Sheffield Mark 1 electrical impedance tomography (EIT) system in measuring impedance disturbances. Physiol. Meas. 15, A45–A50 (1994)
Bera, T.K., Nagaraju, J.: A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging. Sens. Imaging Int. J. 12(3–4), 95–116 (2011)
Kao, T.J., Saulnier, G.J., Isaacson, D., Szabo, T.L., Newell, J.C.: A versatile high-permittivity phantom for EIT. IEEE Trans. Biomed. Eng. 55(11), 2601 (2008)
Wanga, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46, 2845–2853 (2013)
Bera, T.K., Nagaraju, J.: A stainless steel electrode phantom to study the forward problem of electrical impedance tomography (EIT). Sens. Transducers J. 104(5), 33–40 (2009)
Bera, T.K., Nagaraju. J.: A multifrequency electrical impedance tomography (EIT) system for biomedical imaging. In: IEEE International Conference on Signal Processing and Communications (SPCOM 2012), IISc-Bangalore, India pp. 1–5
Bera, T.K., Nagaraju, J.: A simple instrumentation calibration technique for electrical impedance tomography (EIT) using a 16–electrode phantom. In: Proceedings of The Fifth Annual IEEE Conference on Automation Science and Engineering (IEEE CASE 2009), India, 2009, pp. 347–352
Bera, T.K., Nagaraju, J.: A study of practical biological phantoms with simple instrumentation for electrical impedance tomography (EIT). In: Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), Singapore, pp. 511–516, 5th–7th May 2009
Robitaille, N., Guardo, R., Maurice, I., Hartinger, A.E., Gagnon, H.: A multi-frequency EIT system design based on telecommunication signal processors. Physiol. Meas. 30, S57–S71 (2009)
Goharian, M., Soleimani, M., Jegatheesan, A., Chin, K., Moran, G.R.: A DSP based multi-frequency 3D electrical impedance tomography system. Ann. Biomed. Eng. 36, 1594–1603 (2008)
Oh, T.I., Koo, H., Lee, K.H., Kim, S.M., Lee, J., Kim, S.W., Seo, J.K., Woo, E.J.: Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging. Physiol. Meas. 29, 295–307 (2008)
Jennings, D., Schneider, I.D.: Front-end architecture for a multifrequency electrical impedance tomography system. Med. Biol. Eng. Compu. 39(3), 368–374 (2001)
Mohamadou, Y., Oh, T.I., Wi, H., Sohal, H., Farooq, A., Woo, E. J., McEwan, A.: Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source. Meas. Sci. Technol. 23(10), 105703 (2012)
Ross, A.S., Saulnier, G.J., Newell, J.C., Isaacson, D.: Current source design for electrical impedance tomography. Physiol. Meas. 24, 509–516 (2003)
Lee, J.W., Oh, T.I., Paek, S.M., Lee, J.S., Woo, E.J.: Precision constant current source for electrical impedance tomography. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, pp. 1066–1069 (2003)
Gnecchi, J.A.G.: Voltage controlled current source (VCCCS) for electrical impedance tomography (EIT) measurements in the α and β dispersion frequency ranges. In: 2010 Electronics, Robotics and Automotive Mechanics Conference, pp. 677–681
Bera, T.K., Nagaraju, J.: A multifrequency constant current source suitable for electrical impedance tomography (EIT). In: Proceedings of 2010 International Conference on Systems in Medicine and Biology. IIT Kharagpur, India, pp. 278–283, 16–18 Dec 2010
Silverio, E.A.A., Silverio, E.A.A.: A high output impedance current source for wideband bioimpedance spectroscopy using 0.35 μm Tsmc Cmos technology. Int. J. Eng. Appl. Sci. 1(2), 68–75 (2012)
Corrêa Alegria, F., Martinho, E., Almeidac, F.: Measuring soil contamination with the time domain induced polarization method using LabVIEW. Measurement 42, 1082–1091 (2009)
Morse D.H., Antolak A.J., Bench G.S., Roberts M.L.: A flexible LabVIEWTM-based data acquisition and analysis system for scanning microscopy. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact Mate Atoms, 158(1), 146–152(7) (2 Sept 1999)
D’Mello, P.C., D’Souza, S.: Design and development of a virtual instrument for bio-signal acquisition and processing using LabVIEW. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 1(1), 1–9 (2012)
Sumathi, S., Surekha, P.: LabVIEW Based Advanced Instrumentation Systems, 1st edn. Springer, Berlin (2007)
Czerwinski, F., Oddershede, L.B.: TimeSeriesStreaming.vi: LabVIEW program for reliable data streaming of large analog time series. Comput. Phys. Commun. 182, 485–489 (2011)
Bo, L., Liu, X., He, X.: Measurement system for wind turbines noises assessment based on LabVIEW. Measurement 44, 445–453 (2011)
Wang, Z., Shang, Y., Liu, J., Xidong, W.: A LabVIEW based automatic test system for sieving chips. Measurement 46(1), 402–410 (2013)
Giannone, L., Eich, T., Fuchs, J.C., Ravindran, M., Ruan, Q., Wenzel, L., Cernaa, M., Concezzi, S.: Data acquisition and real-time bolometer tomography using LabVIEW RT. Fusion Eng. Des. 86, 1129–1132 (2011)
Yue, X., Drakakis, E.M., Lim, M., Radomska, A., Ye, H., Mantalaris, A., Panoskaltsis, N., Cass, A.: A real-time multi-channel monitoring system for stem cell culture process. IEEE Trans. Biomed. Circuits Syst. 2(2), 66–77 (2008)
Fontenot, R.S., Hollermana, W.A., Aggarwal, M.D., Bhat, K.N., Goedekea, S.M.: A versatile low-cost laboratory apparatus for testing triboluminescent materials. Measurement 45, 431–436 (2012)
Andrei, H., Dogaru-Ulieru, V., Chicco, G., Cepisca, C., Spertino, F.: Photovoltaic applications. J. Mater. Process. Technol. 181, 267–273 (2007)
Ni, J.-Q., Heber, A.J.: An on-site computer system for comprehensive agricultural air quality research. Comput. Electron. Agric. 71, 38–49 (2010)
Ruiz, M., L′opez, J.M., de Arcas, G., Barrera, E., Melendez, R., Vega, J.: Data reduction in the ITMS system through a data acquisition model with self-adaptive sampling rate. Fusion Eng. Des. 83, 358–362 (2008)
Mekida, S., Vacharanukul, K.: In-process out-of-roundness measurement probe for turned work pieces. Measurement 44, 762–766 (2011)
Giannone, L., et al.: Data acquisition and real-time signal processing of plasma diagnostics on ASDEX upgrade using LabVIEW RT. Fusion Eng. Des. 85, 303–307 (2010)
Ionel, R., Vasiu, G., Mischie, S.: GPRS based data acquisition and analysis system with mobile phone control. Measurement 45, 1462–1470 (2012)
Bera, T.K., Nagaraju, J, Studying the 2D resistivity reconstruction of stainless steel electrode phantoms using different current patterns of electrical impedance tomography (EIT). In: Biomedical Engineering, Narosa Publishing House, Proceeding of the International Conference on Biomedical Engineering 2011 (ICBME-2011), India, 2011, pp. 163–69
Bera, T.K., Nagaraju, J.: Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT). Measurement 45, 663–682 (2012)
Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)
Polydorides, N., Lionheart, W.R.B.: A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas. Sci. Technol. 13, 1871–1883 (2002)
Vauhkonen, M., Lionheart, W.R.B., Heikkinen, L.M., Vauhkonen, P.J., Kaipio, J.P.: A MATLAB package for the EIDORS project to reconstruct two dimensional EIT images. Physiol. Meas. 22(107), 111 (2001)
Mekida, S., Vacharanukul, K.: In-process out-of-roundness measurement probe for turned workpieces. Measurement 44, 762–766 (2011)
Data Sheet, NI USB 6251 OEM, High-Speed M Series Multifunction Data Acquisition (DAQ) Module, National Instruments, USA
Data Sheet, NI SCB68, Shielded I/O Connector Block, National Instruments, USA
Data Sheet, CD4067BE IC, CMOS Analog Multiplesers/Demultiplexers, Texas Instruments Inc., USA (2012)
Bera, T.K., Nagaraju, J.: Surface electrode switching of a 16-electrode wireless EIT system using RF-based digital data transmission scheme with 8 channel encoder/decoder ICs. Measurement 45, 541–555 (2012)
Cheng, K.S., Simske, S.J., Isaacson, D., Newell, J.C., Gisser, D.G.: Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography. IEEE Trans. Biomed. Eng. 37(60), 60–65 (1990)
Rosell, J., Riu, P.: Common-mode feedback in electrical impedance tomography. Clin. Phys. Physiol. Meas. 13(Suppl. 4), 11–14 (1992)
Rahal, M., Rida, I., Usman, M., Demosthenous, A.: New techniques to reduce the common-mode signal in multi-frequency EIT applications. In: PIERS Proceedings, Marrakesh, MOROCCO, pp. 1598–1601 (20–23 March 2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer India
About this paper
Cite this paper
Bera, T.K., Nagaraju, J. (2014). A LabVIEW Based Data Acquisition System for Electrical Impedance Tomography (EIT). In: Pant, M., Deep, K., Nagar, A., Bansal, J. (eds) Proceedings of the Third International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 259. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1768-8_34
Download citation
DOI: https://doi.org/10.1007/978-81-322-1768-8_34
Published:
Publisher Name: Springer, New Delhi
Print ISBN: 978-81-322-1767-1
Online ISBN: 978-81-322-1768-8
eBook Packages: EngineeringEngineering (R0)