[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

Growth in number of documents increases day by day, and for managing this growth the document clustering techniques are used document clustering is a significant tool to allocating web search engines for data mining and knowledge discovery. In this paper, we have introduced a new framework graph-based frequent Term set for document clustering (GBFTDC). In this study, document clustering has been performed for extraction of useful information from document dataset based on frequent term set. We have generated association rules to perform pre-processing and then have applied clustering approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kongthon, A.: A text mining framework for discovering technological intelligence to support science and technology management. Technical Report, Georgia Institute of Technology (2004)

    Google Scholar 

  2. Kalogeratos, A., Likas, A.: Document clustering using synthetic cluster prototypes. Data Knowl. Eng. 70, 284–306 (2011)

    Google Scholar 

  3. Fung, B., Wang, K., Ester, M.: Hierarchical document clustering using frequent itemsets. In: Proceeding of SIAM International Conference on Data Mining (SDM’03), pp. 59–70 (2003)

    Google Scholar 

  4. Michenerand, C.D., Sokal, R.R.: A quantitative approach to a problem in classification. Evolution 11, 130–162 (1957)

    Google Scholar 

  5. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: CRISP-DM 1.0 : Step-by-step data mining guide, NCR Systems Engineering Copenhagen (USA), DaimlerChrysler AG, SPSS Inc. (USA) and OHRA Verzekeringenen Bank Group B.V ( Netherlands), (2000)

    Google Scholar 

  6. Chen, C.L., Frank, S.C.T., Liang, T.: An integration of wordnet and fuzzy association rule mining for multi-label document clustering. Data Knowl. Eng. 69, 1208–1226 (2010)

    Google Scholar 

  7. Chen, C.L., Tseng, F.S.C., Liang, T.: An integration of fuzzy association rules and WordNet for document clustering. In: Proceeding of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-09), pp. 147–159 (2009)

    Google Scholar 

  8. Cutting, D.R., Karger, D.R., Pedersen, J.O., Tukey, J.W.: Scatter/Gather: A Cluster-based approach to browsing large document collections. In: Proceedings of the Fifteenth Annual International ACM SIGIR Conference, pp. 318–329, June 1992

    Google Scholar 

  9. Recupero, D.R.: A new unsupervised method for document clustering by using WordNet lexical and conceptual relations. Inf. Retrieval 10(6), 563–579 (2007)

    Article  Google Scholar 

  10. Rajput, D.S., Thakur, R.S., Thakur, G.S.: Rule generation from textual data by using graph based approach. In: International Journal of Computer Application (IJCA) 0975–8887, New york, ISBN: 978-93-80865-11-8, Vol. 31, No.9, pp. 36–43, Oct 2011

    Google Scholar 

  11. Dunham, M.H., Sridhar, S.: Data mining: introductory and advanced topics. Pearson Education, New Delhi, ISBN: 81-7758-785-4, 1st edn. (2006)

    Google Scholar 

  12. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Magazine, American Association for Artificial Intelligence (1996)

    Google Scholar 

  13. Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: Proceeding of International Conference on knowledge Discovery and Data Mining (KDD’02), pp. 436–442 (2002)

    Google Scholar 

  14. Fung, B.C.M., Wang, K., Ester, M.: Hierarchical document clustering using frequent itemsets. In: Proceedings of SIAM International Conference on Data Mining (2003)

    Google Scholar 

  15. Hammouda, K.M., Kamel, M.S.: Efficient phrase-based document indexing for web document clustering. IEEE Trans. Knowl. Data Eng. 16, 1279–1296 (2004)

    Article  Google Scholar 

  16. Han, I., Kamber, M.: Data Mining Concepts and Techniques, pp. 335–389. M. K. Publishers, Berlin (2000)

    Google Scholar 

  17. Haralampos, K., Christos, T., Babis, T.: An approach to text mining using information extraction. In: Proceeding Knowledge Management Theory Applications Workshop, (KMTA 2000), pp. 165–178. Lyon, Sept 2000

    Google Scholar 

  18. Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Appl. Stat. 28, 126–130(1979)

    Google Scholar 

  19. Hotho, A., Staab, S., Stumme, G.: Wordnet improves text document clustering. In: Proceeding of SIGIR International Conference on Semantic Web, Workshop, (2003)

    Google Scholar 

  20. Hung, C., Xiaotie, D.: Efficient phrase-based document similarity for clustering. IEEE Trans. Knowl. Data Eng. 20, 1217–1229 (Sept 2008)

    Google Scholar 

  21. Introduction to Data Mining and Knowledge Discovery, 3rd edn. ISBN: 1-892095-02-5, Two Crows Corporation, 10500 Falls Road, Potomac, MD 20854, U.S.A., (1999)

    Google Scholar 

  22. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Google Scholar 

  23. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  24. Jensen, C.S.: Introduction to Temporal Database Research. http://www.cs.aau.dk/csj/Thesis/pdf/chapter1.pdf

  25. Lovins, J.B.: Development of a stemming algorithm. Mech. Transl. Comput. Linguist. 11(1, 2), 22–31, June 1968

    Google Scholar 

  26. Kiran, G.V.R., Ravi Shankar, Vikram Pudi: Frequent itemset based hierarchical document clustering using wikipedia as external knowledge. KES 2010, Part II, LNAI 6277, pp. 11–20. Springer, Berlin (2010)

    Google Scholar 

  27. Lin, K., Kondadadi, R.: A word-based soft clustering algorithm for documents. In: Proceedings of Computers and Their Applications, pp. 391–394. Seattle (2001)

    Google Scholar 

  28. Larose, D.T.: Discovering knowledge in data: an introduction to data mining, Wiley, Inc., 2005. International Journal of Distributed and Parallel systems (IJDPS) Vol. 1, No. 1, (2010)

    Google Scholar 

  29. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. KDD-2000 Workshop on Text Mining, pp. 109–110 (2000)

    Google Scholar 

  30. Rafi, Muhammad, Shahid Shaikh, M., Farooq, Amir: Document clustering based on topic maps. Int. J. Comput. Appl. 12(1), 32–36 (2010)

    Google Scholar 

  31. Nasukawa, T., Nagano, T.: Text analysis and knowledge mining system. IBM Syst. J. 40(4), 967–984 (2001)

    Google Scholar 

  32. Willett, P.: Recent trends in hierarchic document clustering: a critical review. Inf. Process. Manage. 24(5), 577–597 (1988)

    Article  Google Scholar 

  33. Lin, K., Kondadadi, R.: A word-based soft clustering algorithm for documents. In: Proceeding Computers and Their Applications, pp. 391–394 (2001)

    Google Scholar 

  34. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 207–216 (1993)

    Google Scholar 

  35. Richards, A.L., Holmans, P., O’Donovan, M.C., Owen, M.J., Jones, L.: A comparison of four clustering methods for brain expression microarray data. BMC Bioinform. 9, pp. 1–17 (2008)

    Google Scholar 

  36. Thakur, R.S., Jain, R.C., Pardasani, K.R.: Graph theoretic based algorithm for mining frequent patterns. In: IEEE World Congress on Computational Intelligence, pp. 629–633. Hong Kong (2008)

    Google Scholar 

  37. Thakur, R.S., Jain, R.C., Pardasani, K.R.: Fast algorithms for mining multi-level association rules in large databases. Asian J. Inf. Manage. USA 1(1), 19–26 (2008)

    Google Scholar 

  38. Thakur, R.S., Jain, R.C., Pardasani, K.R.: MAXFP: a multi-strategy algorithm for mining maximum frequent pattern and their support counts. Trends Appl. Sci. Res. 1(4), 402–415 (2006)

    Article  Google Scholar 

  39. Vishnu Priya, R., Vadivel, A., Thakur, R.S.: Frequent pattern mining using modified CP-Tree for knowledge discovery. Advanced Data Mining and Applications, LNCS-2010, Vol. 6440, pp. 254–261. Springer, Berlin (2010)

    Google Scholar 

  40. Soon, M.C., John, D.H., Yanjun, L.: Text document clustering based on frequent word meaning sequences. Data Knowl. Eng. 64, 381–404 (2008)

    Article  Google Scholar 

  41. Valentina, C., Sylvie, D.: Text mining supported terminology construction. In: Proceedings of the 5th International Conference on Knowledge Management, pp. 588–595. Graz, Austria (2005)

    Google Scholar 

Download references

Acknowledgments

This work is supported by research grant from MANIT, Bhopal, India under Grants in Aid Scheme 2010-11, No. Dean(R&C)/2010/63 dated 31/08/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Rajput .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Rajput, D.S., Thakur, R.S., Thakur, G.S. (2014). An Integrated Approach and Framework for Document Clustering Using Graph Based Association Rule Mining. In: Babu, B., et al. Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012. Advances in Intelligent Systems and Computing, vol 236. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1602-5_144

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1602-5_144

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1601-8

  • Online ISBN: 978-81-322-1602-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics