Abstract
It is well known that an excitable medium can be used for information processing with pulses of excitation. In such medium messages can be coded or in the number of pulses or in the sequences of times separating subsequent excitations. Information is processed as the result of two major effects: interactions between pulses and interactions between a pulse and the environment. The properties of excitable medium provide us with a number of features remaining those characterizing biological information processing. For example, pulses of excitation appear as the result of an external stimulus and they can propagate in a homogeneous medium with a constant velocity and a stationary shape dissipating medium energy.
In the paper we focus our attention on a quite specific type of nonhomogeneous medium that has intentionally introduced geometrical structure of regions characterized by different excitability levels. Considering numerical simulations based on simple reaction-diffusion models and experiments with Bielousov-Zhabotinsky reaction we show that in information processing applications the geometry plays equally important role as the dynamics of the medium. A chemical realization of simple information processing devices like logical gates or memory cells are presented. Combining these devices as building blocks we can perform complex signal processing operations like, for example, excitation counting. We also demonstrate that a structured excitable medium can perform sensing functions because it is able to determine a distance separating observer from the source or sense the rate of changes in excitability level. Talking about the perspectives we present ideas for programming information processing medium with excitation pulses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Feynman, R.P., Allen, R.W., Heywould, T.: Feynman Lectures on Computation. Perseus Books, New York (2000)
Calude, C.S., Paun, G.: Computing with cells and atoms. Taylor and Francis, London (2002)
Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)
Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-Diffusion Computers. Elsevier Science, UK (2005)
Kapral, R., Showalter, K.: Chemical Waves and Patterns. Kluwer Academic, Dordrecht (1995)
Kuhnert, L., Agladze, K.I., Krinsky, V.I.: Image processing using light-sensitive chemical waves. Nature 337, 244–247 (1989)
Rambidi, N.G., Maximychev, A.V.: Towards a Biomolecular Computer. Information Processing Capabilities of Biomolecular Nonlinear Dynamic Media. BioSystems 41, 195–211 (1997)
Szymanski, J.: Private information (2008)
Kawczynski, A.L., Legawiec, B.: Two-dimensional model of a reaction-diffusion system as a typewriter. Phys. Rev. E 64, 056202(1-4) (2001)
Kawczynski, A.L., Legawiec, B.: A two-dimensional model of reaction-diffusion system as a generator of Old Hebrew letters. Pol. J. Chem. 78, 733–739 (2004)
Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)
Mikhailov, A.S., Showalter, K.: Control of waves, patterns and turbulence in chemical systems. Phys. Rep. 425, 79–194 (2006)
Krischer, K., Eiswirth, M., Ertl, G.J.: Oscillatory CO oxidation on Pt(110): modelling of temporal self-organization. J.Chem. Phys. 96, 9161–9172 (1992)
Gorecki, J., Kawczynski, A.L.: Molecular dynamics simulations of a thermochemical system in bistable and excitable regimes. J. Phys. Chem. 100, 19371–19379 (1996)
Steinbock, O., Toth, A., Showalter, K.: Navigating complex labyrinths - optimal paths from chemical waves. Science 267, 868–871 (1995)
Toth, A., Showalter, K.: Logic gates in excitable media. J. Chem. Phys. 103, 2058–2066 (1995)
Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)
Gaspar, V., Bazsa, G., Beck, M.T.: The influence of visible light on the Belousov–Zhabotinskii oscillating reactions applying different catalysts. Z. Phys. Chem(Leipzig) 264, 43–48 (1983)
Krug, H.J., Pohlmann, L., Kuhnert, L.: Analysis of the modified complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov–Zhabotinskii systems. J. Phys. Chem. 94, 4862–4866 (1990)
Amemiya, T., Ohmori, T., Yamaguchi, T.: An Oregonator-class model for photoinduced Behavior in the Ru(bpy)\(_{3}^{2+}\)–Catalyzed Belousov–Zhabotinsky reaction. J. Phys. Chem. A. 104, 336–344 (2000)
Motoike, I., Yoshikawa, K.: Information Operations with an Excitable Field. Phys. Rev. E 59, 5354–5360 (1999)
Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. J. Phys. Chem. A 107, 1664–1669 (2003)
Gorecka, J., Gorecki, J.: Multiargument logical operations performed with excitable chemical medium. J. Chem. Phys. 124, 084101 (2006)
Haken, H.: Brain Dynamics. Springer Series in Synergetics. Springer, Berlin (2002)
Agladze, K., Aliev, R.R., Yamaguchi, T., Yoshikawa, K.: Chemical diode. J. Phys. Chem. 100, 13895–13897 (1996)
Sielewiesiuk, J., Gorecki, J.: Chemical impulses in the perpendicular junction of two channels. Acta Phys. Pol. B 32, 1589–1603 (2001)
Sielewiesiuk, J., Gorecki, J.: Logical functions of a cross junction of excitable chemical media. J. Phys. Chem. A 105, 8189–8195 (2001)
Dolnik, M., Finkeova, I., Schreiber, I., Marek, M.: Dynamics of forced excitable and oscillatory chemical-reaction systems. J. Phys. Chem. 93, 2764–2774 (1989); Finkeova, I., Dolnik, M., Hrudka, B., Marek, M.: Excitable chemical reaction systems in a continuous stirred tank reactor. J. Phys. Chem. 94, 4110–4115 (1990); Dolnik, M., Marek, M.: Phase excitation curves in the model of forced excitable reaction system. J. Phys. Chem. 95, 7267–7272 (1991); Dolnik, M., Marek, M., Epstein, I.R.: Resonances in periodically forced excitable systems. J. Phys. Chem. 96, 3218–3224 (1992)
Suzuki, K., Yoshinobu, T., Iwasaki, H.: Unidirectional propagation of chemical waves through microgaps between zones with different excitability. J. Phys. Chem. A 104, 6602–6608 (2000)
Sielewiesiuk, J., Gorecki, J.: On complex transformations of chemical signals passing through a passive barrier. Phys. Rev. E 66, 016212 (2002); Sielewiesiuk, J., Gorecki, J.: Passive barrier as a transformer of chemical signal frequency. J. Phys. Chem. A 106, 4068–4076 (2002)
Taylor, A.F., Armstrong, G.R., Goodchild, N., Scott, S.K.: Propagation of chemical waves across inexcitable gaps. Phys. Chem. Chem. Phys. 5, 3928–3932 (2003)
Armstrong, G.R., Taylor, A.F., Scott, S.K., Gaspar, V.: Modelling wave propagation across a series of gaps. Phys. Chem. Chem. Phys. 6, 4677–4681 (2004)
Gorecki, J., Gorecka, J.N., Yoshikawa, K., Igarashi, Y., Nagahara, H.: Sensing the distance to a source of periodic oscillations in a nonlinear chemical medium with the output information coded in frequency of excitation pulses. Phys. Rev. E 72, 046201 (2005)
Tanaka, M., Nagahara, H., Kitahata, H., Krinsky, V., Agladze, K., Yoshikawa, K.: Survival versus collapse: Abrupt drop of excitability kills the traveling pulse, while gradual change results in adaptation. Phys. Rev. E 76, 016205 (2007)
Lázár, A., Noszticzius, Z., Försterling, H.-D., Nagy-Ungvárai, Z.: Chemical pulses in modified membranes I. Developing the technique. Physica D 84, 112–119 (1995); Volford, A., Simon, P.L., Farkas, H., Noszticzius, Z.: Rotating chemical waves: theory and experiments. Physica A 274, 30–49 (1999)
Nagai, Y., Gonzalez, H., Shrier, A., Glass, L.: Paroxysmal Starting and Stopping of Circulatong Pulses in Excitable Media. Phys. Rev. Lett. 84, 4248–4251 (2000)
Noszticzuis, Z., Horsthemke, W., McCormick, W.D., Swinney, H.L., Tam, W.Y.: Sustained chemical pulses in an annular gel reactor: a chemical pinwheel. Nature 329, 619–620 (1987)
Motoike, I.N., Yoshikawa, K., Iguchi, Y., Nakata, S.: Real–Time Memory on an Excitable Field. Phys. Rev. E 63, 036220 (2001)
Gorecki, J., Gorecka, J.N.: On mathematical description of information processing in chemical systems. In: Mathematical Approach to Nonlinear Phenomena; Modeling, Analysis and Simulations, GAKUTO International Series, Mathematical Sciences and Applications, vol. 23, pp. 73–90 (2005) ISBN 4762504327
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer Tokyo
About this paper
Cite this paper
Gorecki, J., Gorecka, J.N., Igarashi, Y., Yoshikawa, K. (2009). Information Processing with Structured Chemical Excitable Medium. In: Suzuki, Y., Hagiya, M., Umeo, H., Adamatzky, A. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-88981-6_5
Download citation
DOI: https://doi.org/10.1007/978-4-431-88981-6_5
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-88980-9
Online ISBN: 978-4-431-88981-6
eBook Packages: Computer ScienceComputer Science (R0)