Abstract
A new approach to the problem of avalanche forecasting is presented. A hybrid neural expert system will be developed to assess the avalanche danger for a given region. Using snow, weather and snow cover data as input parameters the system evaluates the degree of danger for a given region. It integrates extended symbolic computing from traditional Artificial Intelligence, by generating symbolic rules from subsymbolic data, with unsupervised neural networks. The new approach is compared to present methods of avalanche forecasting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Föhn, P.: Das Schweizerische Lawinenbulletin. In Mitteilung Nr. 38 des Eidg. Instituts für Schnee-und Lawinenforschung, 1985.
Jaccard, C.: Die Rolle des Eidg. Instituts für Schnee-und Lawinenforschung für das Gebirge. In Schweiz. Z. Forstwes., 5:357–365. 141, 1990.
Buser, O., Föhn, P., Good, W., Gubler H.and Salm, B.: Different methods for the assessment of avalanche danger. In Cold Reg. Sci. Technol., 10, 199–218, 1985.
Brun, E., Martin, E., Simon, V., Gendre, C. and Coleou, C: An energy and mass model of snow cover suitable for operational avalanche forecasting. In J. Glaciol., 35 (121), 333–342, 1989.
Buser, O.: Avalanche forecast with the method of nearest neighbours: an interactive approach. In Cold Reg. Sci. Technol., 8, 155–163, 1983.
Föhn, P., Hachler, P.: Prévision des grosses avalanches au moyens d’un modèle deterministe-statistique. ANENA. In Comptes Rendues du 2e Rencontre Int. sur la Neige et les Avalanches, Grenoble, 12–14, 151–165, Avril 1978.
Remund, J.: Verifikation der regionalen Lawinengefahrenprognose. Diplomarbeit am Geographischen Institut der ETH Zürich, Nr. 70. 5, 1993.
Bolognesi, R.: Artificial intelligence and local avalanche forecasting: the system AVALOG. In Proc. of the Int. Emergency Management and Engineering Conf., Arlington, 1993.
Schweizer, J., Föhn, P. und Plüss, Ch.: COGENSYSTM Judgment Processor (Paradocs) als Hilfsmittel für die Lawinenwarnung. In Interner Bericht Nr. 675, Eidgenössisches Institut für Schnee-und Lawinenforschung, 1992.
Ultsch, A.: Konnektionistische Modelle und ihre Integration mit wissenbasierten Systemen. Forschungsbericht Nr. 396, Universität Dortmund, FB Informatik, Feb. 1991.
Palm, G., Ultsch, A., Goser, K., Rückert, U.: Knowledge Processing in Neural Architecture, Delgado-Fraias, J.G., Moore, W.R. (eds): VLSI for Neural Networks and Artificial Intelligence, Plenum Publ., New York 1993.
Ultsch, A., Li, H.: Automatic Acquisition of Symbolic Knowledge from Subsymbolic Neural Networks. To appear in: Proc. Intl. Conf. on Signal Processing, Peking 1993.
Ultsch, A., Siemon, H.P.: Kohonen’s Self Organizing Feature Maps for Exploratory Data Analysis. In Proc. Intern. Neural Networks, 305–308. Kluwer Academic Press, Paris 1990.
Ultsch, A.: Self-Organized Feature Maps for Monitoring and Knowledge Akquisition of a Chemical Process. In Proc. Intl. Conf. on Artificial Neural Networks, 864–867, Amsterdam 1993.
Kohonen, T.: Self-Organization and Associative Memory, Springer Series in Information Sciences, 1989 (3rd ed.).
Ultsch, A.: Self-Organizing Neural Networks for Knowledge Acquisition. In Proc. 10th Int. Conf. on AI 92, ECAI Vienna 92
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1994 Springer-Verlag/Wien
About this paper
Cite this paper
Schweizer, M., Föhn, P.M.B., Schweizer, J., Ultsch, A. (1994). A Hybrid Expert System for Avalanche Forecasting. In: Schertler, W., Schmid, B., Tjoa, A.M., Werthner, H. (eds) Information and Communications Technologies in Tourism. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9343-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-7091-9343-3_23
Publisher Name: Springer, Vienna
Print ISBN: 978-3-211-82543-3
Online ISBN: 978-3-7091-9343-3
eBook Packages: Springer Book Archive