[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Successful pedagogical applications of symbolic computation

  • Chapter
Computer-Human Interaction in Symbolic Computation

Part of the book series: Texts and Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

At the Education Program for Gifted Youth (EPGY) we have developed a series of stand-alone, multi-media computer-based courses designed to teach advanced students mathematics at the secondary-school and college level. The EPGY course software has been designed to be used in those settings where a regular class cannot be offered, either because of an insufficient number of students to take the course or the absence of a qualified instructor to teach the course. In this way it differs from traditional applications of computers in education, most of which are intended to be used primarily as supplements and in conjunction with a human teacher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ager, T., Ravaglia, R., Dooley, S. (1989): Representation of inference in computer algebra systems with applications to intelligent tutoring. In: Kaltofen, E., Watt, S. (eds.): Computers and mathematics. Springer, New York Berlin Heidelberg, pp. 215–227.

    Chapter  Google Scholar 

  • Beeson, M. (1990): Mathpert: a computerized environment for learning algebra, trig, and calculus. J. Artif. Intell. Educ. 2: 1–11.

    Article  MathSciNet  Google Scholar 

  • Brown, D., Porta, H., Uhl, J. (1991): Calculus and Mathematica: a laboratory course for learning by doing. In: Leinbach, L. C., Hindhausen, J. R., Ostebee, A. M., Senechal, L. J., Small, D. B. (eds.): The laboratory approach to teaching calculus. The Mathematical Association of America, Washington, DC (MAA Notes, vol. 20).

    Google Scholar 

  • Chuaqui, R., Suppes, P. (1990): An equational deductive system for the differential and integral calculus. In: Martin-Löf, P., Mints, G. (eds.): COLOG-88. Springer, Berlin Heidelberg New York Tokyo, pp. 25–49 (Lecture notes in computer science, vol. 417).

    Chapter  Google Scholar 

  • Crandall, R. E. (1989): Mathematica for the sciences. Addison-Wesley, Menlo Park, CA.

    Google Scholar 

  • Cuasay, P. (1992): Cognitive factors in academic achievement. Higher Ed. Ext. Serv. Rev. 3/3.

    Google Scholar 

  • Davenport, J., Siret, Y., Tournier, E. (1988): Computer algebra: systems and algorithms for algebraic computation. Academic Press, London.

    MATH  Google Scholar 

  • Hughes-Hallett, D., et al. (1992): Calculus. Wiley, New York.

    Google Scholar 

  • ICTCM (1995): Eighth International Conference on Technology in Collegiate Mathematics, November 1995, Houston, TX, prelimary schedule.

    Google Scholar 

  • Kaltofen, E., Watt, S. (eds.) (1989): Computers and mathematics. Springer, New York Berlin Heidelberg.

    MATH  Google Scholar 

  • Kane, M. T. (1981): The diversity in samples of student proofs as a function of problem characteristics: the 1970 Stanford CAI logic curriculum. In: Suppes, P. (ed.): University-level computer-assisted instruction at Stanford: 1968–1980. Inst. Math. Stu. Soc. Sci., Stanford University, Stanford, CA, pp. 251–276.

    Google Scholar 

  • Kajler, N., Soiffer, N. (1998): A survey of user interfaces for computer algebra systems. J. Symb. Comp, (to appear)

    Google Scholar 

  • Moloney, J. M. (1981): An investigation of college-student performance on the 1970 Stanford CAI curriculum. In: Suppes, P. (ed.): University-level computer-assisted instruction at Stanford: 1968–1980. Inst. Math. Stu. Soc. Sci., Stanford University, Stanford, CA, pp. 277–300.

    Google Scholar 

  • Nicaud, J. F. (1992): Reference network: a genetic model for intelligent tutoring systems. In: Frasson, C., Gauthier, G., McCalla, G. I. (eds.): Intelligent tutoring systems. Springer, Berlin Heidelberg New York Tokyo, pp. 351–359 (Lecture notes in computer science, vol. 608).

    Google Scholar 

  • Nicaud, J. F. (1994): Building ITSs to be used: lessons learned from the APLUSIX project. In: Lewis, R., Mendelsohn, P. (eds.): Lessons from learning. North-Holland, Amsterdam, pp. 181–198 (IFIP transactions, series A, vol. 46).

    Google Scholar 

  • Oliver, J., Zukerman, I. (1991): DISSOLVE: an algebra expert for an intelligent tutoring system. In: Lewis, R., Otsuki, S. (eds.): Proceedings of Advanced Research on Computers in Education, IFIP TC3 International Conference, Tokyo, Japan, 1990. North-Holland, Amsterdam, pp. 219–224.

    Google Scholar 

  • Ravaglia, R. (1995): Design issues in a stand alone multimedia computer-based mathematics curriculum. In: Fourth Annual x. Multimedia in Education and Industry, Asheville, NC, pp. 49–52.

    Google Scholar 

  • Ravaglia, R., de Barros, J. A., Suppes, P. (1994): Computer-based advanced placement physics for gifted students. Comput. Phys. 9: 380–386.

    Google Scholar 

  • Ravaglia, R., Suppes, P., Stillinger, C., Alper, T. (1995): Computer-based mathematics and physics for gifted students. Gifted Child Q. 39: 7–13.

    Article  Google Scholar 

  • Richardson, D. (1968): Some undecidable problems involving elementary functions of a real variable. J. Symb. Logic 33: 515–521.

    Google Scholar 

  • Suppes, P. (ed.) (1981): University-level computer-assisted instruction at Stanford: 1968–1980. Inst. Math. Stu. Soc. Sci., Stanford University, Stanford, CA.

    Google Scholar 

  • Suppes, P., Sheehan, J. (1981): CAI course in axiomatic set theory. In: Suppes, P. (ed.): University-level computer-assisted instruction at Stanford: 1968–1980. Inst. Math. Stu. Soc. Sci., Stanford University, Stanford, CA, pp. 3–80.

    Google Scholar 

  • Suppes, P., Sheehan, J. (1981): CAI course in logic. In: Suppes, P. (ed.): University-level computer-assisted instruction at Stanford: 1968–1980. Inst. Math. Stu. Soc. Sci., Stanford University, Stanford, CA, pp. 193–226.

    Google Scholar 

  • Wagon, S. (1991): Mathematica in action. Freeman, San Francisco.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Ravaglia, R., Alper, T., Rozenfeld, M., Suppes, P. (1998). Successful pedagogical applications of symbolic computation. In: Kajler, N. (eds) Computer-Human Interaction in Symbolic Computation. Texts and Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6461-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6461-7_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82843-4

  • Online ISBN: 978-3-7091-6461-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics