[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A General Framework for Multiple Choice Question Answering Based on Mutual Information and Reinforced Co-occurrence

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XLII

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 11860))

Abstract

As a result of the continuously growing volume of information available, browsing and querying of textual information in search of specific facts is currently a tedious task exacerbated by a reality where data presentation very often does not meet the needs of users. To satisfy these ever-increasing needs, we have designed an solution to provide an adaptive and intelligent solution for the automatic answer of multiple-choice questions based on the concept of mutual information. An empirical evaluation over a number of general-purpose benchmark datasets seems to indicate that this solution is promising.

This manuscript is an extended version of Ref. [22].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/facebookresearch/DrQA.

  2. 2.

    http://www.oup.com.

References

  1. Aydin, B.I., Yilmaz, Y.S., Li, Y., Li, Q., Gao, J., Demirbas, M.: Crowdsourcing for multiple-choice question answering. In: AAAI 2014, pp. 2946–2953 (2014)

    Google Scholar 

  2. Bennett, Z., Russell-Rose, T., Farmer, K.: A scalable approach to legal question answering. In: ICAIL 2017, pp. 269–270 (2017)

    Google Scholar 

  3. Blohm, S., Cimiano, P.: Using the web to reduce data sparseness in pattern-based information extraction. In: PKDD 2007, pp. 18–29 (2007)

    Google Scholar 

  4. Brueninghaus, S., Ashley, K.D.: Improving the representation of legal case texts with information extraction methods. In: ICAIL 2001, pp. 42–51 (2001)

    Google Scholar 

  5. Clark, P., et al.: Combining retrieval, statistics, and inference to answer elementary science questions. In: AAAI 2016, pp. 2580-2586 (2016)

    Google Scholar 

  6. Church, K.W., Hanks, P.: Word association norms, mutual information and lexicography. In: 27th ACL, pp. 76–83 (1989)

    Google Scholar 

  7. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)

    Article  Google Scholar 

  8. Ding, J., Wang, Y., Hu, W., Shi, L., Qu, Y.: Answering multiple-choice questions in geographical Gaokao with a concept graph. In: ESWC 2018, pp. 161–176 (2018)

    Chapter  Google Scholar 

  9. Fawei, B., Pan, J.Z., Kollingbaum, M.J., Wyner, A.: A methodology for criminal law and procedure ontology for legal question answering. In: JIST 2018, pp. 198–214 (2018)

    Chapter  Google Scholar 

  10. Ferrucci, D.A.: Introduction to this is Watson. IBM J. Res. Dev. 56(3), 1 (2012)

    Google Scholar 

  11. Ferrucci, D.A., Levas, A., Bagchi, S., Gondek, D., Mueller, E.T.: Watson: beyond jeopardy! Artif. Intell. 199–200, 93–105 (2013)

    Article  Google Scholar 

  12. Hameurlain, A., Morvan, F.: Big Data management in the cloud: evolution or crossroad? In: BDAS 2016, pp. 23–38 (2016)

    Google Scholar 

  13. Hoeffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.-C.: Survey on challenges of question answering in the semantic web. Semant. Web 8(6), 895–920 (2017)

    Article  Google Scholar 

  14. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)

    Article  MathSciNet  Google Scholar 

  15. Joshi, M., Choi, E., Weld, D.S., Zettlemoyer, L.: TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension. In: ACL1 2017, pp. 1601–1611 (2017)

    Google Scholar 

  16. Kolomiyets, O., Moens, M.-F.: A survey on question answering technology from an information retrieval perspective. Inf. Sci. 181(24), 5412–5434 (2011)

    Article  MathSciNet  Google Scholar 

  17. Krovetz, R.: Viewing morphology as an inference process. Artif. Intell. 118(1–2), 277–294 (2000)

    Article  Google Scholar 

  18. Kumar Ray, S., Singh, S., Joshi, B.P.: Exploring multiple ontologies and WordNet framework to expand query for question answering system. In: IHCI 2009, pp. 296–305 (2009)

    Chapter  Google Scholar 

  19. Lame, G.: Using NLP techniques to identify legal ontology components: concepts and relations. Artif. Intell. Law 12(4), 379–396 (2004)

    Article  Google Scholar 

  20. Lee, L.: Measures of distributional similarity. In: ACL 1999 (1999)

    Google Scholar 

  21. Li, Y., McLean, D., Bandar, Z., O’Shea, J., Crockett, K.A.: Sentence similarity based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8), 1138–1150 (2006)

    Article  Google Scholar 

  22. Martinez-Gil, J., Freudenthaler, B., Tjoa, A.M.: Multiple choice question answering in the legal domain using reinforced co-occurrence. In: DEXA (1) 2019, pp. 138–148 (2019)

    Google Scholar 

  23. Martinez-Gil, J., Freudenthaler, B., Natschlaeger, T.: Automatic recommendation of prognosis measures for mechanical components based on massive text mining. IJWIS 14(4), 480–494 (2018)

    Article  Google Scholar 

  24. Martinez-Gil, J.: Automated knowledge base management: a survey. Comput. Sci. Rev. 18, 1–9 (2015)

    Article  MathSciNet  Google Scholar 

  25. Martinez-Gil, J.: An overview of textual semantic similarity measures based on web intelligence. Artif. Intell. Rev. 42(4), 935–943 (2014)

    Article  Google Scholar 

  26. Maxwell, K.T., Schafer, B.: Concept and context in legal information retrieval. In: JURIX 2008, pp. 63–72 (2008)

    Google Scholar 

  27. Mimouni, N., Nazarenko, A., Salotti, S.: Answering complex queries on legal networks: a direct and a structured IR approaches. In: AICOL 2017, pp. 451–464 (2017)

    Google Scholar 

  28. Morimoto, A., Kubo, D., Sato, M., Shindo, H., Matsumoto, Y.: Legal question answering system using neural attention. In: COLIEE@ICAIL 2017, pp. 79–89 (2017)

    Google Scholar 

  29. Nicula, B., Ruseti, S., Rebedea, T.: Improving deep learning for multiple choice question answering with candidate contexts. In: ECIR 2018, pp. 678-683 (2018)

    Google Scholar 

  30. Reese, S., Boleda, G., Cuadros, M., Padró, L., Rigau, G.: Wikicorpus: a word-sense disambiguated multilingual Wikipedia corpus. In: LREC 2010 (2010)

    Google Scholar 

  31. Stam, M.: Calcipher system. https://github.com/matt-stam/calcipher. Accessed 01 Apr 2019

  32. Sun, H., Wei, F., Zhou, M.: Answer extraction with multiple extraction engines for web-based question answering. In: NLPCC 2014, pp. 321–332 (2014)

    Google Scholar 

  33. Xu, K., Reddy, S., Feng, Y., Huang, S., Zhao, D.: Question answering on freebase via relation extraction and textual evidence. In: ACL1 2016 (2016)

    Google Scholar 

  34. Yih, W.-T., Chang, M.-W., Meek, C., Pastusiak, A.: Question answering using enhanced lexical semantic models. In: ACL1 2013, pp. 1744–1753 (2013)

    Google Scholar 

  35. Zhang, Y., He, S., Liu, K., Zhao, J.: A joint model for question answering over multiple knowledge bases. In: AAAI 2016, pp. 3094–3100 (2016)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their helpful suggestions to improve this work. This research has been supported by the Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry of Science, Research and Economy, and the Province of Upper Austria in the frame of the COMET center SCCH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Martinez-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinez-Gil, J., Freudenthaler, B., Tjoa, A.M. (2019). A General Framework for Multiple Choice Question Answering Based on Mutual Information and Reinforced Co-occurrence. In: Hameurlain, A., Wagner, R. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XLII. Lecture Notes in Computer Science(), vol 11860. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60531-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60531-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60530-1

  • Online ISBN: 978-3-662-60531-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics