Abstract
This paper concerns blind signature schemes. We focus on two moves constructions, which imply concurrent security. There are known efficient blind signature schemes based on the random oracle model and on the common reference string model. However, constructing two move blind signatures in the standard model is a challenging task, as shown by the impossibility results of Fischlin et al. The recent construction by Garg et al. (Eurocrypt’14) bypasses this result by using complexity leveraging, but it is impractical due to the signature size (\(\approx \) 100 kB). Fuchsbauer et al. (Crypto’15) presented a more practical construction, but with a security argument based on interactive assumptions. We present a blind signature scheme that is two-move, setup-free and comparable in terms of efficiency with the results of Fuchsbauer et al. Its security is based on a knowledge assumption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barbosa, M., Farshim, P.: Strong knowledge extractors for public-key encryption schemes. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 164–181. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14081-5_11. http://dblp.uni-trier.de/db/conf/acisp/acisp2010.html#BarbosaF10a
Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006). doi:10.1007/11693383_22. http://dblp.uni-trier.de/db/conf/sacrypt/sacrypt2005.html#BarretoN05
Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8_17. http://www.iacr.org/cryptodb/archive/2004/CRYPTO/961/961.pdf
Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008). http://dblp.uni-trier.de/db/journals/joc/joc21.html#BonehB08
Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4_33
Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Springer, Heidelberg (1982)
Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006). doi:10.1007/11818175_4
Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_10
Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. Cryptology ePrint Archive, Report 2015/626 (2015). http://eprint.iacr.org/
Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_27
Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_36
Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from composite-order to prime-order groups: the case of round-optimal blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8_30
Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998). doi:10.1007/BFb0054135
Acknowledgments
We would like to thank prof. Mirosław Kutyłowski and the anonymous reviewers of FC for their valuable comments on this short paper. This research was supported by the National Science Centre (Poland) based on decision no. 2014/15/N/ST6/04577.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 International Financial Cryptography Association
About this paper
Cite this paper
Hanzlik, L., Kluczniak, K. (2017). A Short Paper on Blind Signatures from Knowledge Assumptions. In: Grossklags, J., Preneel, B. (eds) Financial Cryptography and Data Security. FC 2016. Lecture Notes in Computer Science(), vol 9603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54970-4_31
Download citation
DOI: https://doi.org/10.1007/978-3-662-54970-4_31
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-54969-8
Online ISBN: 978-3-662-54970-4
eBook Packages: Computer ScienceComputer Science (R0)