[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Short Paper on Blind Signatures from Knowledge Assumptions

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9603))

Included in the following conference series:

Abstract

This paper concerns blind signature schemes. We focus on two moves constructions, which imply concurrent security. There are known efficient blind signature schemes based on the random oracle model and on the common reference string model. However, constructing two move blind signatures in the standard model is a challenging task, as shown by the impossibility results of Fischlin et al. The recent construction by Garg et al. (Eurocrypt’14) bypasses this result by using complexity leveraging, but it is impractical due to the signature size (\(\approx \) 100 kB). Fuchsbauer et al. (Crypto’15) presented a more practical construction, but with a security argument based on interactive assumptions. We present a blind signature scheme that is two-move, setup-free and comparable in terms of efficiency with the results of Fuchsbauer et al. Its security is based on a knowledge assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbosa, M., Farshim, P.: Strong knowledge extractors for public-key encryption schemes. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 164–181. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14081-5_11. http://dblp.uni-trier.de/db/conf/acisp/acisp2010.html#BarbosaF10a

    Chapter  Google Scholar 

  2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006). doi:10.1007/11693383_22. http://dblp.uni-trier.de/db/conf/sacrypt/sacrypt2005.html#BarretoN05

    Chapter  Google Scholar 

  3. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8_17. http://www.iacr.org/cryptodb/archive/2004/CRYPTO/961/961.pdf

    Chapter  Google Scholar 

  4. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008). http://dblp.uni-trier.de/db/journals/joc/joc21.html#BonehB08

    Article  MathSciNet  MATH  Google Scholar 

  5. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4_33

    Chapter  Google Scholar 

  6. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Springer, Heidelberg (1982)

    Google Scholar 

  7. Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006). doi:10.1007/11818175_4

    Chapter  Google Scholar 

  8. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_10

    Chapter  Google Scholar 

  9. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. Cryptology ePrint Archive, Report 2015/626 (2015). http://eprint.iacr.org/

  10. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_27

    Chapter  Google Scholar 

  11. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_36

    Chapter  Google Scholar 

  12. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from composite-order to prime-order groups: the case of round-optimal blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8_30

    Chapter  Google Scholar 

  13. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998). doi:10.1007/BFb0054135

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank prof. Mirosław Kutyłowski and the anonymous reviewers of FC for their valuable comments on this short paper. This research was supported by the National Science Centre (Poland) based on decision no. 2014/15/N/ST6/04577.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucjan Hanzlik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 International Financial Cryptography Association

About this paper

Cite this paper

Hanzlik, L., Kluczniak, K. (2017). A Short Paper on Blind Signatures from Knowledge Assumptions. In: Grossklags, J., Preneel, B. (eds) Financial Cryptography and Data Security. FC 2016. Lecture Notes in Computer Science(), vol 9603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54970-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54970-4_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54969-8

  • Online ISBN: 978-3-662-54970-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics