[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Bounds for the Convergence Time of Local Search in Scheduling Problems

  • Conference paper
  • First Online:
Web and Internet Economics (WINE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10123))

Included in the following conference series:

  • 936 Accesses

Abstract

We study the convergence time of local search for a standard machine scheduling problem in which jobs are assigned to identical or related machines. Local search corresponds to the best response dynamics that arises when jobs selfishly try to minimize their costs. We assume that each machine runs a coordination mechanism that determines the order of execution of jobs assigned to it. We obtain various new polynomial and pseudo-polynomial bounds for the well-studied coordination mechanisms Makespan and Shortest-Job-First, using worst-case and smoothed analysis. We also introduce a natural coordination mechanism FIFO, which takes into account the order in which jobs arrive at a machine, and study both its impact on the convergence time and its price of anarchy.

This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. J. Comput. Syst. Sci. 69(3), 306–329 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brucker, P., Hurink, J., Werner, F.: Models and algorithms for planning and scheduling problems improving local search heuristics for some scheduling problems. Part II. Discrete Appl. Math. 72(1), 47–69 (1997). doi:http://dx.doi.org/10.1016/S0166-218X(96)00036-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunsch, T., Röglin, H., Rutten, C., Vredeveld, T.: Smoothed performance guarantees for local search. Math. Program. 146(1–2, Ser. A), 185–218 (2014). doi:10.1007/s10107-013-0683-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 345–357. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27836-8_31

    Chapter  Google Scholar 

  5. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. Trans. Algorithms ACM 3(1) (2007)

    Google Scholar 

  6. Etscheid, M.: Performance guarantees for scheduling algorithms under perturbed machine speeds. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 207–217. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45030-3_20

    Chapter  Google Scholar 

  7. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to Nash equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003). doi:10.1007/3-540-45061-0_41

    Chapter  Google Scholar 

  8. Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the coordination ratio for a selfish routing game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg (2003). doi:10.1007/3-540-45061-0_42

    Chapter  Google Scholar 

  9. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT 19, 312–320 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling under resource constraints. SIAM J. Comput. 4, 397–411 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldberg, P.W.: Bounds for the convergence rate of randomized local search in a multiplayer load-balancing game. In: Proceedings of the PODC 2004, pp. 131–140 (2004). doi:10.1145/1011767.1011787

  12. Hurkens, C.A.J., Vredeveld, T.: Local search for multiprocessor scheduling: how many moves does it take to a local optimum? Oper. Res. Lett. 31(2), 137–141 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for selfish scheduling. Theor. Comput. Sci. 410(17), 1589–1598 (2009). doi:10.1016/j.tcs.2008.12.032

    Article  MathSciNet  MATH  Google Scholar 

  14. Manthey, B., Röglin, H.: Smoothed analysis: analysis of algorithms beyond worst case. IT - Information Technology 53(6), 280–286 (2011)

    Article  Google Scholar 

  15. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Internat. J. Game Theor. 2, 65–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multiprocessor scheduling. Informs J. Comput. 19(1), 52–63 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Spielman, D., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spielman, D., Teng, S.-H.: Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Clemens Rösner for helpful discussions about the lower bounds for the SJF model and the proof of Theorem 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Etscheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Brunsch, T., Etscheid, M., Röglin, H. (2016). Bounds for the Convergence Time of Local Search in Scheduling Problems. In: Cai, Y., Vetta, A. (eds) Web and Internet Economics. WINE 2016. Lecture Notes in Computer Science(), vol 10123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54110-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54110-4_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54109-8

  • Online ISBN: 978-3-662-54110-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics