[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Lower Bounds for Approximate LDCs

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

  • 2757 Accesses

Abstract

We study an approximate version of q-query LDCs (Locally Decodable Codes) over the real numbers and prove lower bounds on the encoding length of such codes. A q-query (α,δ)-approximate LDC is a set V of n points in ℝd so that, for each i ∈ [d] there are Ω(δn) disjoint q-tuples (u 1,…,u q ) in V so that span(u 1,…,u q ) contains a unit vector whose i’th coordinate is at least α. We prove exponential lower bounds of the form \(n \geq 2^{\Omega(\alpha \delta \sqrt{d})}\) for the case q = 2 and, in some cases, stronger bounds (exponential in d).

The full version of this paper is available at http://arxiv.org/abs/1402.6952 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ai, A., Dvir, Z., Saraf, S., Wigderson, A.: Sylvester-Gallai type theorems for approximate collinearity. Forum of Mathematics, Sigma 4 (2014)

    Google Scholar 

  2. Ben-Aroya, A., Regev, O., de Wolf, R.: A hypercontractive inequality for matrix-valued functions with applications to quantum computing and LDCs. In: FOCS 2008, pp. 477–486 (2008)

    Google Scholar 

  3. Barak, B., Dvir, Z., Wigderson, A., Yehudayoff, A.: Fractional Sylvester-Gallai theorems. Proceedings of the National Academy of Sciences (2012)

    Google Scholar 

  4. Ben-Aroya, A., Efremenko, K., Ta-Shma, A.: Local list decoding with a constant number of queries. In: FOCS 2010, pp. 715–722 (2010)

    Google Scholar 

  5. Beaver, D., Feigenbaum, J.: Hiding instances in multioracle queries. In: Choffrut, C., Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp. 37–48. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  6. Blum, M., Kannan, S.: Designing programs that check their work. J. ACM 42(1), 269–291 (1995)

    Article  MATH  Google Scholar 

  7. Briët, J., Naor, A., Regev, O.: Locally decodable codes and the failure of cotype for projective tensor products. Electronic Research Announcements in Mathematical Sciences (ERA-MS) 19, 120–130 (2012)

    Article  MATH  Google Scholar 

  8. Chee, Y., Feng, T., Ling, S., Wang, H., Zhang, L.: Query-efficient locally decodable codes of subexponential length. ECCC, TR10-173 (2010)

    Google Scholar 

  9. Dvir, Z., Gopalan, P., Yekhanin, S.: Matching vector codes. SIAM J. Comput. 40(4), 1154–1178 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dvir, Z., Shpilka, A.: Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits. In: STOC 2005, pp. 592–601 (2005)

    Google Scholar 

  11. Dvir, Z., Saraf, S., Wigderson, A.: Breaking the quadratic barrier for 3-LCCs over the reals. In: STOC 2014 (2014)

    Google Scholar 

  12. Dvir, Z., Saraf, S., Wigderson, A.: Improved rank bounds for design matrices and a new proof of Kelly’s theorem. Forum of Mathematics, Sigma 4 (2014)

    Google Scholar 

  13. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: STOC 2009, pp. 39–44 (2009)

    Google Scholar 

  14. Goldreich, O., Karloff, H., Schulman, L.J., Trevisan, L.: Lower bounds for linear locally decodable codes and private information retrieval. Computational Complexity 15(3), 263–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Itoh, T., Suzuki, Y.: Improved constructions for query-efficient locally decodable codes of subexponential length. IEICE Transactions on Information and Systems E93-D(2), 263–270 (2010)

    Google Scholar 

  16. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. Journal of Computer and System Sciences 69(3), 395–420 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kindler, G., Rao, A., O’Donnell, R., Wigdersons, A.: Spherical cubes: optimal foams from computational hardness amplification. Commun. ACM 55(10), 90–97 (2012)

    Article  Google Scholar 

  18. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: STOC 2000, pp. 80–86 (2000)

    Google Scholar 

  19. Kedlaya, K.S., Yekhanin, S.: Locally decodable codes from nice subsets of finite fields and prime factors of Mersenne numbers. SIAM J. Comput. 38(5), 1952–1969 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lipton, R.J.: Efficient checking of computations. In: Choffrut, C., Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp. 207–215. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  21. Raghavendra, P.: A note on Yekhanin’s locally decodable codes. ECCC, TR07-016 (2007)

    Google Scholar 

  22. Woodruff, D.P.: New lower bounds for general locally decodable codes. ECCC, TR07-006 (2007)

    Google Scholar 

  23. Woodruff, D.P.: A quadratic lower bound for three-query linear locally decodable codes over any field. Journal of Computer Science and Technology 27(4), 678–686 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length. Journal of the ACM 55(1), 1–16 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Briët, J., Dvir, Z., Hu, G., Saraf, S. (2014). Lower Bounds for Approximate LDCs. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics