Abstract
Given a simple polygon P and a set Q of points contained in P, we consider the geodesic k-center problem in which we seek to find k points, called centers, in P to minimize the maximum geodesic distance of any point of Q to its closest center. In this paper, we focus on the case for \(k=2\) and present the first exact algorithm that efficiently computes an optimal 2-center of Q with respect to the geodesic distance in P.
Work by Oh and Ahn was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by the government of Korea. Work by S.W. Bae was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013R1A1A1A05006927) and by the Ministry of Education (2015R1D1A1A01057220).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn, H.K., Barba, L., Bose, P., De Carufel, J.L., Korman, M., Oh, E.: A linear-time algorithm for the geodesic center of a simple polygon. In: Proceedings of the 31st Symposium Computational Geometry (SoCG), vol. 34, pp. 209–223 (2015)
Aronov, B., Fortune, S., Wilfong, G.: The furthest-site geodesic voronoi diagram. Discrete Comput. Geom. 9(1), 217–255 (1993)
Asano, T., Toussaint, G.T.: Computing geodesic center of a simple polygon. Technical report SOCS-85.32, McGill University (1985)
Chan, T.M.: More planar two-center algorithms. Comput. Geom. 13(3), 189–198 (1999)
Chazelle, B., Matoušek, J.: On linear-time deterministic algorithms for optimization problems in fixed dimension. J. Algorithms 21(3), 579–597 (1996)
Cole, R.: Parallel merge sort. SIAM J. Comput. 17(4), 770–785 (1988)
Dyer, M.E.: On a multidimensional search technique and its application to the euclidean one-centre problem. SIAM J. Comput. 15(3), 725–738 (1986)
Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Proceedings of the 20th ACM Symposium Theory Computing (STOC), pp. 434–444 (1988)
Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2(1–4), 209–233 (1987)
Halperin, D., Sharir, M., Goldberg, K.Y.: The 2-center problem with obstacles. J. Algorithms 42(1), 109–134 (2002)
Hwang, R., Lee, R., Chang, R.: The slab dividing approach to solve the Euclidean \(p\)-center problem. Algorithmica 9(1), 1–22 (1993)
Megiddo, N.: Linear-time algorithms for linear programming in \(R^3\) and related problems. SIAM J. Comput. 12(4), 759–776 (1983)
Oh, E., De Carufel, J.-L., Ahn, H.-K.: The 2-center problem in a simple polygon. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 307–317. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_27
Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple polygon. Discrete Comput. Geom. 4(1), 611–626 (1989)
Toussaint, G.T.: Computing geodesic properties inside a simple polygon. Revue D’Intelligence Artificielle 3, 9–42 (1989)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Oh, E., Bae, S.W., Ahn, HK. (2016). Computing a Geodesic Two-Center of Points in a Simple Polygon. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_48
Download citation
DOI: https://doi.org/10.1007/978-3-662-49529-2_48
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49528-5
Online ISBN: 978-3-662-49529-2
eBook Packages: Computer ScienceComputer Science (R0)