[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Graph Drawings with One Bend and Few Slopes

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

Abstract

We consider drawings of graphs in the plane in which edges are represented by polygonal paths with at most one bend and the number of different slopes used by all segments of these paths is small. We prove that \(\lceil \frac{\varDelta }{2}\rceil \) edge slopes suffice for outerplanar drawings of outerplanar graphs with maximum degree \(\varDelta \geqslant 3\). This matches the obvious lower bound. We also show that \(\lceil \frac{\varDelta }{2}\rceil +1\) edge slopes suffice for drawings of general graphs, improving on the previous bound of \(\varDelta +1\). Furthermore, we improve previous upper bounds on the number of slopes needed for planar drawings of planar and bipartite planar graphs.

K. Knauer—Supported by ANR EGOS grant ANR-12-JS02-002-01 and PEPS grant EROS.

B. Walczak—Supported by MNiSW grant 911/MOB/2012/0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barát, J., Matoušek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric thickness. Electron. J. Combin. 13(1), #R3, 14 pp. (2006)

    Google Scholar 

  2. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Czyzowicz, J.: Lattice diagrams with few slopes. J. Combin. Theory, Ser. A 56(1), 96–108 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Czyzowicz, J., Pelc, A., Rival, I., Urrutia, J.: Crooked diagrams with few slopes. Order 7(2), 133–143 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Di Giacomo, E., Liotta, G., Montecchiani, F.: The planar slope number of subcubic graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 132–143. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Comput. Geom. 38(3), 181–193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor. Comput. Sci. 6(2), 339–358 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Felsner, S., Kaufmann, M., Valtr, P.: Bend-optimal orthogonal graph drawing in the general position model. Comput. Geom. 47(3), 460–468 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Fraysseix, H., de Mendez, P.O., Pach, J.: A left-first search algorithm for planar graphs. Discrete Comput. Geom. 13(3–4), 459–468 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Combin. Prob. Comput. 3(2), 233–246 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B., Tesař, M., Vyskočil, T.: The planar slope number of planar partial \(3\)-trees of bounded degree. Graphs Combin. 29(4), 981–1005 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most five slopes. Comput. Geom. 40(2), 138–147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Knauer, K., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes. Comput. Geom. 47(5), 614–624 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lenhart, W., Liotta, G., Mondal, D., Nishat, R.I.: Planar and plane slope number of partial 2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 412–423. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for \(2\)-bend embeddings of planar graphs in the two-dimensional grid. Discrete Appl. Math. 81(1–3), 69–91 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Misra, J., Gries, D.: A constructive proof of Vizing’s theorem. Inform. Process. Lett. 41(3), 131–133 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 254–265. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four directions. Comput. Geom. 42(9), 842–851 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nomura, K., Tayu, S., Ueno, S.: On the orthogonal drawing of outerplanar graphs. In: Chwa, K.-Y., Munro, J.I. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 300–308. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. Electron. J. Combin. 13(1), #N1, 4 pp. (2006)

    Google Scholar 

  24. Vizing, V.G.: Ob otsenke khromaticheskogo klassa \(p\)-grafa (On an estimate of the chromatic class of a \(p\)-graph). Diskret. Analiz 3, 25–30 (1964)

    MathSciNet  Google Scholar 

  25. Wade, G.A., Chu, J.H.: Drawability of complete graphs using a minimal slope set. Comput. J. 37(2), 139–142 (1994)

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to Piotr Micek for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolja Knauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knauer, K., Walczak, B. (2016). Graph Drawings with One Bend and Few Slopes. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics