Abstract
Biclustering is an important method of processing a big amount of data. In this paper, hierarchical structures of biclusters and their advantages are discussed. We propose the author’s method called HEMBI (Hierarchical Evolutionary Multi-Biclustering) which creates this kind of structures. The HEMBI uses an Evolutionary Algorithm to split a data space into a restricted number of regions. The important feature of the method is ability to choice the optimal number of biclusters, which is restricted only to a maximum value. The conducted experiments and their results are presented and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press Professional, San Diego (1990)
Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. Comput. J. 26(4), 354–359 (1983)
Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data (TKDD) 3, 1 (2009)
Alizedeh, A.A.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nat. 403, 503–510 (2000)
Divina, F., Aguilar-Ruiz, J.S.: Biclustering of expression data with evolutionary. IEEE Trans. Knowl. Data Eng. 18(5), 590–602 (2006)
Li, G., et al.: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res. 37, e101 (2009)
Caldas, J., Kaski, S.: Hierarchical generative biclustering for MicroRNA expression analysis. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 65–79. Springer, Heidelberg (2010)
Teng, L., Chan, L.: Discovering biclusters by iteratively sorting with weighted correlation coefficient in gene expression data. J. Signal Process. Syst. 50, 267–280 (2008)
Ji, L., Mock, K.W.L., Tan K.L.: Quick hierarchical biclustering on microarray gene expression data. In: Sixth IEEE Symposium on BioInformatics and BioEngineering, BIBE, VA, Arlington (2006)
Yang, A., et al.: Unsupervised segmentation of natural images via lossy data compression. Comput. Vis. Image Underst. 110(2), 212–225 (2008)
Vidal, R., Tron, R., Hartley, R.: Multiframe motion segmentation with missing data using powerfactorization and GPCA. Int. J. Comput. Vis. 79(1), 85–105 (2008)
Nie, Z., Kambhampati, S.: A frequency-based approach for mining coverage statistics in data integration. In: Proceedings of the 20th International Conference on Data Engineering, Toronto, Canada (2004)
de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying biclustering to text mining: an immune-inspired approach. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 83–94. Springer, Heidelberg (2007)
Agarwal, N., Haque, E., Liu, H., Parsons, L.: Research paper recommender systems: a subspace clustering approach. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739, pp. 475–491. Springer, Heidelberg (2005)
Cheng, Y., Church, G.: Biclustering of expression data. In: Proceedings of International Conference on Intelligent Systems for Molecular Biology (2000)
Mirkin, B.: Mathematical Classification and Clustering. Kluwer Academic Press, Boston, Dordrecht (1996)
Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 1, 24–45 (2004)
Wang, H., et al.: Clustering by pattern similarity in large data sets. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2002, New York (2002)
Ayadi, W., Elloumi, M., Hao, J.-K.: A biclustering algorithm based on a Bicluster Enumeration Tree: application to DNA microarray data. BioData Mining, vol. 2(1) (2009). doi:10.1186/1756-0381-2-9
Hartigan, J.: Direct clustering of a data matrix. J. Am. Stat. Assoc. 67(337), 123–129 (1972)
Zhang, Z., et al.: Mining deterministic biclusters in gene expression data. In: Proceedings of Fourth IEEE Symposium on Bioinformatics and Bioengineering, BIBE 2004 (2004)
Alizadeh, A.A., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nat. 403, 503–510 (2000)
Prelic, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinform. 22(9), 1122–1129 (2006). (online access) (suppl. material)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Filipiak, A.M., Kwasnicka, H. (2016). Hierarchical Evolutionary Multi-biclustering. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49381-6_64
Download citation
DOI: https://doi.org/10.1007/978-3-662-49381-6_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49380-9
Online ISBN: 978-3-662-49381-6
eBook Packages: Computer ScienceComputer Science (R0)