[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hierarchical Evolutionary Multi-biclustering

Hierarchical Structures of Biclusters Generation

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9621))

Included in the following conference series:

  • 2383 Accesses

Abstract

Biclustering is an important method of processing a big amount of data. In this paper, hierarchical structures of biclusters and their advantages are discussed. We propose the author’s method called HEMBI (Hierarchical Evolutionary Multi-Biclustering) which creates this kind of structures. The HEMBI uses an Evolutionary Algorithm to split a data space into a restricted number of regions. The important feature of the method is ability to choice the optimal number of biclusters, which is restricted only to a maximum value. The conducted experiments and their results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press Professional, San Diego (1990)

    MATH  Google Scholar 

  2. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. Comput. J. 26(4), 354–359 (1983)

    Article  MATH  Google Scholar 

  3. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data (TKDD) 3, 1 (2009)

    Article  Google Scholar 

  4. Alizedeh, A.A.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nat. 403, 503–510 (2000)

    Article  Google Scholar 

  5. Divina, F., Aguilar-Ruiz, J.S.: Biclustering of expression data with evolutionary. IEEE Trans. Knowl. Data Eng. 18(5), 590–602 (2006)

    Article  Google Scholar 

  6. Li, G., et al.: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res. 37, e101 (2009)

    Article  Google Scholar 

  7. Caldas, J., Kaski, S.: Hierarchical generative biclustering for MicroRNA expression analysis. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 65–79. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Teng, L., Chan, L.: Discovering biclusters by iteratively sorting with weighted correlation coefficient in gene expression data. J. Signal Process. Syst. 50, 267–280 (2008)

    Article  Google Scholar 

  9. Ji, L., Mock, K.W.L., Tan K.L.: Quick hierarchical biclustering on microarray gene expression data. In: Sixth IEEE Symposium on BioInformatics and BioEngineering, BIBE, VA, Arlington (2006)

    Google Scholar 

  10. Yang, A., et al.: Unsupervised segmentation of natural images via lossy data compression. Comput. Vis. Image Underst. 110(2), 212–225 (2008)

    Article  Google Scholar 

  11. Vidal, R., Tron, R., Hartley, R.: Multiframe motion segmentation with missing data using powerfactorization and GPCA. Int. J. Comput. Vis. 79(1), 85–105 (2008)

    Article  Google Scholar 

  12. Nie, Z., Kambhampati, S.: A frequency-based approach for mining coverage statistics in data integration. In: Proceedings of the 20th International Conference on Data Engineering, Toronto, Canada (2004)

    Google Scholar 

  13. de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying biclustering to text mining: an immune-inspired approach. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 83–94. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Agarwal, N., Haque, E., Liu, H., Parsons, L.: Research paper recommender systems: a subspace clustering approach. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739, pp. 475–491. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Cheng, Y., Church, G.: Biclustering of expression data. In: Proceedings of International Conference on Intelligent Systems for Molecular Biology (2000)

    Google Scholar 

  16. Mirkin, B.: Mathematical Classification and Clustering. Kluwer Academic Press, Boston, Dordrecht (1996)

    Book  MATH  Google Scholar 

  17. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 1, 24–45 (2004)

    Article  Google Scholar 

  18. Wang, H., et al.: Clustering by pattern similarity in large data sets. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2002, New York (2002)

    Google Scholar 

  19. Ayadi, W., Elloumi, M., Hao, J.-K.: A biclustering algorithm based on a Bicluster Enumeration Tree: application to DNA microarray data. BioData Mining, vol. 2(1) (2009). doi:10.1186/1756-0381-2-9

  20. Hartigan, J.: Direct clustering of a data matrix. J. Am. Stat. Assoc. 67(337), 123–129 (1972)

    Article  Google Scholar 

  21. Zhang, Z., et al.: Mining deterministic biclusters in gene expression data. In: Proceedings of Fourth IEEE Symposium on Bioinformatics and Bioengineering, BIBE 2004 (2004)

    Google Scholar 

  22. Alizadeh, A.A., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nat. 403, 503–510 (2000)

    Article  Google Scholar 

  23. Prelic, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinform. 22(9), 1122–1129 (2006). (online access) (suppl. material)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halina Kwasnicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filipiak, A.M., Kwasnicka, H. (2016). Hierarchical Evolutionary Multi-biclustering. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49381-6_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49381-6_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49380-9

  • Online ISBN: 978-3-662-49381-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics