[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Method for Query Top-K Rules from Class Association Rule Set

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9621))

Included in the following conference series:

  • 2374 Accesses

Abstract

Methods for mining/querying Top-k frequent patterns and Top-k association rules have been developed in recent years. However, methods for mining/querying Top-k rules from a set of class association rules have not been developed. In this paper, we propose a method for querying Top-k class association rules based on the support. From the set of mined class association rules that satisfy the minimum support and minimum confidence thresholds, we use an insertion-based method to query Top-k rules. Firstly, we insert k rules from the rule set to the result set. After that, for each rule in the rest, we insert it into the result rule set using the idea of insertion strategy if its support is greater than the support of the last rule in the result rule set. Experimental results show that the proposed method is more efficient than obtaining the result after sorting the whole rule set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD Conference, Washington DC, US, pp. 207–216 (1993)

    Google Scholar 

  2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. In: Proceedings of Wadsworth, Belmont, CA, vol.1, pp. 14–23. CRC Press (1984)

    Google Scholar 

  3. Chen, W.C., Hsu, C.C., Hsu, J.N.: Adjusting and generalizing CBA algorithm to handling class imbalance. Expert Syst. Appl. 39(5), 5907–5919 (2012)

    Article  Google Scholar 

  4. Chen, F., Wang, Y., Li, M., Wu, H., Tian, J.: A Principal Association Mining An efficient classification approach. Knowl.-Based Syst. 67, 16–25 (2014)

    Article  Google Scholar 

  5. Chen, C.H., Chiang, R.D., Lee, C.M., Chen, C.Y.: Improving the performance of association classifiers by rule prioritization. Knowl.-Based Syst. 36, 59–67 (2012)

    Article  Google Scholar 

  6. Deng, Z.H., Fang, G.: Mining top-rank-k frequent patterns. In: ICMLC, pp. 851–856 (2007)

    Google Scholar 

  7. Deng, Z.H.: Fast mining top-rank-k frequent patterns by using Node-lists. Expert Syst. Appl. 41(4), 1763–1768 (2014)

    Article  Google Scholar 

  8. Duong, H.V., Truong, T.C.: An efficient method for mining associaiton rules based on minimum single constraints. Vietnam J. Comput. Sci. 2(2), 67–83 (2015)

    Article  Google Scholar 

  9. Webb, G.I.: Filtered-top-k association discovery. WIREs Data Min. Knowl. Discov. 1, 183–192 (2011)

    Article  Google Scholar 

  10. Hooshsadat, M., Zaïane, O.R.: An associative classifier for uncertain datasets. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part I. LNCS, vol. 7301, pp. 342–353. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Lan, Y., Janssens, D., Chen, G., Wets, G.: Improving associative classification by incorporating novel interestingness measures. Expert Syst. Appl. 31(1), 184–192 (2006)

    Article  Google Scholar 

  12. Le, Q.H.T., Le, T., Vo, B., Le, B.: An efficient and effective algorithm for mining top-rank-k frequent patterns. Expert Syst. Appl. 42(1), 156–164 (2015)

    Article  MathSciNet  Google Scholar 

  13. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. In: Proceedings of the 1st IEEE International Conference on Data Mining, San Jose, California, USA, pp. 369–376 (2001)

    Google Scholar 

  14. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, USA, pp. 80–86 (1998)

    Google Scholar 

  15. Liu, H., Sun, J., Zhang, H.: Post-processing of associative classification rules using closed sets. Expert Syst. Appl. 36(3), 6659–6667 (2009)

    Article  MathSciNet  Google Scholar 

  16. Nguyen, L.T.T., Vo, B., Hong, T.P., Thanh, H.C.: CAR-Miner: An efficient algorithm for mining class-association rules. Expert Syst. Appl. 40(6), 2305–2311 (2013)

    Article  Google Scholar 

  17. Nguyen, L.T.T., Nguyen, N.T.: An improved algorithm for mining class association rules using the difference of Obidsets. Expert Syst. Appl. 42(9), 4361–4369 (2015)

    Article  Google Scholar 

  18. Mai, S.T., He, X., Feng, J., Böhm, C.: Efficient anytime density-based clustering. In: Proceedings of SIAM International Conference on Data Mining (SDM 2013), pp. 112–120 (2013)

    Google Scholar 

  19. Mai, S.T., He, X., Feng, J., Plant, C., Böhm, C.: Anytime density-based clustering of Complex Data. Knowl. Inf. Syst. 45, 319–355 (2015)

    Article  Google Scholar 

  20. Mai, S.T., He, X., Hubig, N., Plant, C., Böhm, C.: Active density-based clustering. In: Proceedings of International Conference on Data Mining (ICDM 2013), pp. 508–517 (2013)

    Google Scholar 

  21. Parker, C.: An analysis of performance measures for binary classifiers. In: Proceedings of ICDM, pp. 517–526 (2011)

    Google Scholar 

  22. Fournier-Viger, P., Tseng, V.S.: Mining Top-K sequential rules. In: Tang, J., King, I., Chen, L., Wang, J. (eds.) ADMA 2011, Part II. LNCS, vol. 7121, pp. 180–194. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Fournier-Viger, P., Wu, C.-W., Tseng, V.S.: Mining Top-K association rules. In: Kosseim, L., Inkpen, D. (eds.) Canadian AI 2012. LNCS, vol. 7310, pp. 61–73. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Fournier-Viger, P., Tseng, V.S.: Mining Top-K non-redundant association rules. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.) ISMIS 2012. LNCS, vol. 7661, pp. 31–40. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Quinlan, J.R.: Introduction of decision tree. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  26. Quinlan, J.R.: C4.5: program for machine learning. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  27. Shaharanee, I.N.M., Hadzic, F., Dillon, T.S.: Interestingness measures for association rules based on statistical validity. Knowl.-Based Syst. 24(3), 386–392 (2011)

    Article  Google Scholar 

  28. Thabtah, F., Cowling, P., Peng, Y.: MMAC: A new multi-class, multi-label associative classification approach. In: Proceedings of the 4th IEEE International Conference on Data Mining, Brighton, UK, pp. 217–224 (2004)

    Google Scholar 

  29. Thabtah, F., Cowling, P., Peng, Y.: MCAR: Multi-class classification based on association rule. In: Proceedings of the 3rd ACS/IEEE International Conference on Computer Systems and Applications, Tunis, Tunisia, pp. 33–39 (2005)

    Google Scholar 

  30. Thabtah, F.A.: A review of associative classification mining. Knowl. Eng. Rev. 22(1), 37–65 (2007)

    Article  Google Scholar 

  31. Thabtah, F.A., Cowling, P.I.: A greedy classification algorithm based on association rule. Appl. Soft Comput. 7(3), 1102–1111 (2007)

    Article  Google Scholar 

  32. Tolun, M.R., Abu-Soud, S.M.: ILA: An inductive learning algorithm for production rule discovery. Expert Syst. Appl. 14(3), 361–370 (1998)

    Article  Google Scholar 

  33. Tolun, M.R., Sever, H., Uludag, M., Abu-Soud, S.M.: ILA-2: An inductive learning algorithm for knowledge discovery. Cybern. Syst. 30(7), 609–628 (1998)

    MATH  Google Scholar 

  34. Vo, B., Le, B.: A novel classification algorithm based on association rules mining. In: Richards, D., Kang, B.-H. (eds.) PKAW 2008. LNCS, vol. 5465, pp. 61–75. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loan T. T. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, L.T.T., Nguyen, H.T., Vo, B., Nguyen, NT. (2016). A Method for Query Top-K Rules from Class Association Rule Set. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49381-6_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49381-6_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49380-9

  • Online ISBN: 978-3-662-49381-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics