[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Parallel Implementations of the Ant Colony Optimization Metaheuristic

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9621))

Included in the following conference series:

  • 2357 Accesses

Abstract

The paper discusses different approaches to parallel implementation of the Ant Colony Optimization metaheuristic. The metaheuristic is applied to the well-known Travelling Salesman Problem. Although the Ant Colony Optimization approach is capable of delivering good quality solutions for the TSP it suffers from two factors: complexity and non-determinism. Overpopulating ants makes the ACO performance more predictable but increasing the number of ants makes the need for parallel processing even more apparent. The proposed Ant Colony Community (ACC) uses a coarse grained approach to parallelization. Two implementations using RMI and Sockets respectively are compared. Results of an experiment prove the ACC is capable of a substantial reduction of processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antosiewicz, M., Koloch, G., Kamiński, B.: Choice of best possible metaheuristic algorithm for the travelling salesman problem with limited computational time: quality, uncertainty and speed. Journal of Theoretical and Applied Computer Science 7(1), 46–55 (2013)

    Google Scholar 

  2. Psarafits, H.N.: Dynamic vehicle routing: Status and Prospects. National Technical Annals of Operations Research, University of Athens, Greece (1995)

    Google Scholar 

  3. Siemiński, A.: Using ACS for dynamic traveling salesman problem. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds.) New Research in Multimedia and Internet Systems. AISC, vol. 314, pp. 145–155. Springer, Heidelberg (2015)

    Google Scholar 

  4. Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes in dynamic environments. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 371–380. Springer, Heidelberg (2010)

    Google Scholar 

  5. Song, Y., Qin, Y.: Dynamic TSP optimization base on elastic adjustment. In: IEEE Fifth International Conference on Natural Computation, pp. 205–210 (2009)

    Google Scholar 

  6. Dorigo, M.,: Optimization, Learning and Natural Algorithms, Ph.D. thesis, Politecnico di Mila-no, Italie (1992)

    Google Scholar 

  7. Dorigo, M., Stuetzle, T.: Ant Colony Optimization: Overview and Recent Advances, IRIDIA - Technical Report Series, Technical Report No. TR/IRIDIA/2009-013, May 2009

    Google Scholar 

  8. Chirico, U.: A Java framework for ant colony systems. In: Forth International Work-shop on Ant Colony Optimization and Swarm Intelligence, Ants2004, Brussels (2004)

    Google Scholar 

  9. Siemiński, A.: TSP/ACO Parameter Optimization; Information Systems Architecture and Technology; System Analysis Approach to the Design, Control and Decision Support; pp. 151–161; Oficyna Wydawnicza Politechniki Wrocławskiej (2011)

    Google Scholar 

  10. Gaertner, D., Clark, K.L.: On optimal parameters for ant colony optimization algorithms. In: IC-AI, pp. 83–89 (2005)

    Google Scholar 

  11. Pedemonte, M., Nesmachnow, S., Cancela, H.: A survey on parallel ant colony optimization. Appl. Soft Comput. 11, 5181–5197 (2011)

    Article  Google Scholar 

  12. Castillo, O., Lizßrraga, E., Soria, J., Melin, P., Valdez, F.: New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. Inf. Sci. 294, 203–215 (2015)

    Article  MathSciNet  Google Scholar 

  13. Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. 28, 150–159 (2015)

    Article  Google Scholar 

  14. Siemiński, A.: Ant colony optimization parameter evaluation. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds.) Multimedia and Internet Systems: Theory and Practice. AISC, vol. 183, pp. 143–153. Springer, Heidelberg (2013). ISSN 2194-5357

    Chapter  Google Scholar 

  15. Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant colony optimization on graphics processing units. J. Parallel Distrib. Comput. 73, 52–61 (2013)

    Article  Google Scholar 

  16. Randall, M., Lewis, A.: A parallel implementation of ant colony optimization. J. Parallel Distrib. Comput. 62, 1421–1432 (2002). Academic Press Inc

    Article  MATH  Google Scholar 

  17. Delisle, P., Gravel, M., Krajecki, M., Gagné, C., Price, W.L.: Comparing parallelization of an ACO: message passing vs. shared memory. In: Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 1–11. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Siemiński, A.: Potentials of hyper populated ant colonies. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS, vol. 9011, pp. 408–417. Springer, Heidelberg (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Siemiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siemiński, A. (2016). Parallel Implementations of the Ant Colony Optimization Metaheuristic. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49381-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49381-6_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49380-9

  • Online ISBN: 978-3-662-49381-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics