Abstract
The paper discusses different approaches to parallel implementation of the Ant Colony Optimization metaheuristic. The metaheuristic is applied to the well-known Travelling Salesman Problem. Although the Ant Colony Optimization approach is capable of delivering good quality solutions for the TSP it suffers from two factors: complexity and non-determinism. Overpopulating ants makes the ACO performance more predictable but increasing the number of ants makes the need for parallel processing even more apparent. The proposed Ant Colony Community (ACC) uses a coarse grained approach to parallelization. Two implementations using RMI and Sockets respectively are compared. Results of an experiment prove the ACC is capable of a substantial reduction of processing time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antosiewicz, M., Koloch, G., Kamiński, B.: Choice of best possible metaheuristic algorithm for the travelling salesman problem with limited computational time: quality, uncertainty and speed. Journal of Theoretical and Applied Computer Science 7(1), 46–55 (2013)
Psarafits, H.N.: Dynamic vehicle routing: Status and Prospects. National Technical Annals of Operations Research, University of Athens, Greece (1995)
Siemiński, A.: Using ACS for dynamic traveling salesman problem. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds.) New Research in Multimedia and Internet Systems. AISC, vol. 314, pp. 145–155. Springer, Heidelberg (2015)
Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes in dynamic environments. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 371–380. Springer, Heidelberg (2010)
Song, Y., Qin, Y.: Dynamic TSP optimization base on elastic adjustment. In: IEEE Fifth International Conference on Natural Computation, pp. 205–210 (2009)
Dorigo, M.,: Optimization, Learning and Natural Algorithms, Ph.D. thesis, Politecnico di Mila-no, Italie (1992)
Dorigo, M., Stuetzle, T.: Ant Colony Optimization: Overview and Recent Advances, IRIDIA - Technical Report Series, Technical Report No. TR/IRIDIA/2009-013, May 2009
Chirico, U.: A Java framework for ant colony systems. In: Forth International Work-shop on Ant Colony Optimization and Swarm Intelligence, Ants2004, Brussels (2004)
Siemiński, A.: TSP/ACO Parameter Optimization; Information Systems Architecture and Technology; System Analysis Approach to the Design, Control and Decision Support; pp. 151–161; Oficyna Wydawnicza Politechniki Wrocławskiej (2011)
Gaertner, D., Clark, K.L.: On optimal parameters for ant colony optimization algorithms. In: IC-AI, pp. 83–89 (2005)
Pedemonte, M., Nesmachnow, S., Cancela, H.: A survey on parallel ant colony optimization. Appl. Soft Comput. 11, 5181–5197 (2011)
Castillo, O., Lizßrraga, E., Soria, J., Melin, P., Valdez, F.: New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. Inf. Sci. 294, 203–215 (2015)
Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. 28, 150–159 (2015)
Siemiński, A.: Ant colony optimization parameter evaluation. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds.) Multimedia and Internet Systems: Theory and Practice. AISC, vol. 183, pp. 143–153. Springer, Heidelberg (2013). ISSN 2194-5357
Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant colony optimization on graphics processing units. J. Parallel Distrib. Comput. 73, 52–61 (2013)
Randall, M., Lewis, A.: A parallel implementation of ant colony optimization. J. Parallel Distrib. Comput. 62, 1421–1432 (2002). Academic Press Inc
Delisle, P., Gravel, M., Krajecki, M., Gagné, C., Price, W.L.: Comparing parallelization of an ACO: message passing vs. shared memory. In: Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 1–11. Springer, Heidelberg (2005)
Siemiński, A.: Potentials of hyper populated ant colonies. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS, vol. 9011, pp. 408–417. Springer, Heidelberg (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Siemiński, A. (2016). Parallel Implementations of the Ant Colony Optimization Metaheuristic. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49381-6_60
Download citation
DOI: https://doi.org/10.1007/978-3-662-49381-6_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49380-9
Online ISBN: 978-3-662-49381-6
eBook Packages: Computer ScienceComputer Science (R0)