[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SVM Based Lung Cancer Prediction Using microRNA Expression Profiling from NGS Data

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9621))

Included in the following conference series:

  • 2383 Accesses

Abstract

microRNAs are single stranded non coding RNA sequences of 18 - 24 nucleotide length. They play an important role in post transcriptional regulation of gene expression. Last decade witnessed identification of hundreds of human microRNAs from genomic data. Experimental as well as computational identification of microRNA binding sites in messenger RNAs are also in progress. Evidences of microRNAs acting as promoter /suppressor of several diseases including cancer are being unveiled. The advancement of Next Generation Sequencing technologies with dramatic reduction in cost, opened endless applications and rapid advances in many fields related to biological science. microRNA expression profiling is a measure of relative abundance of microRNA sequences to the total number of sequences in a sample. Many experiments conducted in this kind of measure proved differential expression of microRNAs in diseased states. This paper discusses an algorithm for microRNA expression profiling, its normalization, and a Support Vector based machine learning approach to develop a Cancer Prediction System. The developed system classify samples with 97.6 % accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  Google Scholar 

  2. Chandra, V.S., Reshmi, G., Achuthsankar, S.N., Sreenathan, S., Radhakrishna, M.P.: Mtar: A computational microrna target prediction architecture for human transcriptome. BMC Bioinform. 10(S1), 1–9 (2010)

    Google Scholar 

  3. Salim, A., Chandra, V.S.: Computational prediction of microRNAs and their targets. J. Proteomics Bioinform. 7(7), 193–202 (2014)

    Google Scholar 

  4. Li, Y., Kowdley, K.V.: MicroRNAs in common human diseases. Genomics Proteomics Bioinform. 10, 246–253 (2012)

    Article  Google Scholar 

  5. Esteller, M.: Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011)

    Article  Google Scholar 

  6. Ayman, G., Kate, W.: Next-generation sequencing: Methodology and application. Soc. Invest. Dermatol. 133, e11 (2013)

    Article  Google Scholar 

  7. Colin, C.P., Heather, H.C., Muneesh, T.: MicroRNA profiling: approaches and considerations. Nat. Rev. 13, 358–369 (2012)

    Article  Google Scholar 

  8. Shirley, T., de Richard, B., Ming-Sound, T., John, D.M.: Robust global microrna expression profiling using next-generation sequencing technologies. Lab. Invest. 94, 350–358 (2013)

    Google Scholar 

  9. Esquela-Kerscher, A., Frank, J.S.: Oncomirs: microRNAs with a role in cancer. Nat. Rev. 6, 259–269 (2006)

    Article  Google Scholar 

  10. Teresa, M.L., Yingdong, Z., Melissa, R., Jill, K., Hui, L., Andrew, W.B., Maurizia, R., Alisa, M.G., Ilona, L., Francesco, M.M.: MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin. Cancer Res. 16(2), 430–441 (2010)

    Article  Google Scholar 

  11. Boya, X., Ding, Q., Han, H., Wu, D.: MiRCancer: a microRNAcancer association database constructed by text mining on literature. BMC Bioinform. 29, 638–644 (2013)

    Article  Google Scholar 

  12. Andreas, R., Andreas, K., Daniel, S., Felix, B., Barbara, B., Irmtraud, D., Gisela, F., Goar, F., Corinna, M., Fabian, J.T.: Phenomir: A knowledge base for microrna expression in diseases and biological processes. Genome Biology

    Google Scholar 

  13. Kozomara, A., Griffiths-Jones, S.: MiRBase: Annotating high confidence micrornas using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014)

    Article  Google Scholar 

  14. Seda, E., Danos, C.C., Francois, V., George, M.C., Seidman, J.G.: Quantification of microRNA expression with next-generation sequencing. Curr. Protoc. Mol. Biol. 4(16), 1–20 (2013)

    Google Scholar 

  15. Nuno, A.F., Johan, R., Alvis, B., John C.M.: Tools for mapping high-throughput sequencing data. Bioinform. Adv. Access (2012)

    Google Scholar 

  16. Kristina, S., Susanne, L., Molton, M.W., Clara-Cecilie, G., Marit, H., Eivind, H., Oystein, F., Leonardo, A.M.Z., Kjersti, F.: Deep sequencing the microRNA transcriptome in colorectal cancer. PLOS-ONE 8(6), 3169–3177 (2013)

    Google Scholar 

  17. Johannes, H.S., Tobias, M., Marcel, M., Philipp, R., Pieter, M., Stefanie, S., Theresa, T., Jo, V., Angelika, E., Stefan, S., Sven, R., Alexander, S.: Deep sequencing reveals differential expression of micrornas in favorable versus unfavorable neuroblastoma. Nucleic Acids Res. 38(17), 5919–5928 (2010)

    Article  Google Scholar 

  18. Hong-Tai, C., Sung-Chou, L., Meng-Ru, H., Hung-Wei, P., Luo-Ping, G., Ling-Yueh, H., Shou-Yu, Y., Wen-Hsiung, L., Kuo-Wang, T.: Comprehensive analysis of microRNAs in breast cancer. BMC Genomics 13(6), s18 (2012)

    Google Scholar 

  19. Horspool, R.N.: Practical fast searching in strings. Softw. Pract. Experience 10, 501506 (1980)

    Article  Google Scholar 

  20. Meyer, S.U., Pfaffl, M.W., Ulbrich, S.E.: Normalization strategies for microrna profiling experiments: a normal way to a hidden layer of complexity? Biotechnol. Lett. 10(1007), 1777–1788 (2010)

    Article  Google Scholar 

  21. Anil, J., Karthik, N., Arun, R.: Score normalization in multimodal biometric systems. Pattern Recogn. 38, 2270–2285 (2005)

    Article  Google Scholar 

  22. Isabelle, G., Andre, E.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

A., S., R., A., S. S., V.C. (2016). SVM Based Lung Cancer Prediction Using microRNA Expression Profiling from NGS Data. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49381-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49381-6_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49380-9

  • Online ISBN: 978-3-662-49381-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics