[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Approach to Multimedia Ontology Engineering for Automated Reasoning over Audiovisual LOD Datasets

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9621))

Included in the following conference series:

Abstract

Multimedia reasoning, which is suitable for, among others, multimedia content analysis and high-level video scene interpretation, relies on the formal and comprehensive conceptualization of the represented knowledge domain. However, most multimedia ontologies are not exhaustive in terms of role definitions, and do not incorporate complex role inclusions and role interdependencies. In fact, most multimedia ontologies do not have a role box at all, and implement only a basic subset of the available logical constructors. Consequently, their application in multimedia reasoning is limited. To address the above issues, VidOnt, the very first multimedia ontology with \( {{\mathcal{S}\mathcal{R}\mathcal{O}\mathcal{I}\mathcal{Q}}^{{({\mathcal{D}})}}} \) expressivity and a DL-safe ruleset has been introduced for next-generation multimedia reasoning. In contrast to the common practice, the formal grounding has been set in one of the most expressive description logics, and the ontology validated with industry-leading reasoners, namely HermiT and FaCT++. This paper also presents best practices for developing multimedia ontologies, based on my ontology engineering approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the \( {{\mathcal{S}\mathcal{R}\mathcal{O}\mathcal{I}\mathcal{Q}}} \) description logic. Many less expressive DLs do not provide inverse roles, and no other ontology supports the universal role, which has been introduced in \( {{\mathcal{S}\mathcal{R}\mathcal{O}\mathcal{I}\mathcal{Q}}} \).

  2. 2.

    Semantic Web Rule Language.

References

  1. Meghini, C., Sebastiani, F., Straccia, U.: Reasoning about the Form and Content of Multimedia Objects. In: AAAI 1997 Spring Symposium on Intelligent Integration and Use of Text, Image, Video and Audio, pp. 89–94. AAAI Press, Menlo Park (1997)

    Google Scholar 

  2. Simou, N., Athanasiadis, T., Tzouvaras, V., Kollias, S.: Multimedia reasoning with f–SHIN. In: Second International Workshop on Semantic Media Adaptation and Personalization, IEEE (2007). doi:10.1109/SMAP.2007.40

  3. Simou, N., Saathoff, C., Dasiopoulou, S., Spyrou, E., Voisine, N., Tzouvaras, V., Kompatsiaris, I., Avrithis, Y., Staab, S.: An ontology infrastructure for multimedia reasoning. In: Atzori, L., Giusto, D.D., Leonardi, R., Pereira, F. (eds.) VLBV 2005. LNCS, vol. 3893, pp. 51–60. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Town, C.: Ontological inference for image and video analysis. Mach. Vis. Appl. 17(2), 94–115 (2006). doi:10.1007/s00138-006-0017-3

    Article  Google Scholar 

  5. Gómez-Romero, J., Patricio, M.A., García, J., Molina, J.M.: Ontology-based context representation and reasoning for object tracking and scene interpretation in video. Expert Syst. Appl. 38, 7494–7510 (2011). doi:10.1016/j.eswa.2010.12.118

    Article  Google Scholar 

  6. Möller, R., Neumann, B.: Ontology-based reasoning techniques for multimedia interpretation and retrieval. In: Semantic Multimedia and Ontologies. Springer, London (2008). doi:10.1007/978-1-84800-076-6_3

  7. Elleuch, N., Zarka, M., Ammar, A.B., Alimi, A.M.: A fuzzy ontology-based framework for reasoning in visual video content analysis and indexing. In: 11th International Workshop on Multimedia Data Mining (MDMKDD 2011), San Diego (2011). doi:10.1145/2237827.2237828

  8. Jaimes, A., Tseng, B.L., Smith, J.R.: Modal keywords, ontologies, and reasoning for video understanding. In: Bakker, E.M., Lew, M.S., Huang, T.S., Sebe, N., Zhou, X.S. (eds.) Image and Video Retrieval. LNCS, vol. 2728, pp. 248–259. Springer, Heidelberg (2003). doi:10.1007/3-540-45113-7_25

    Chapter  Google Scholar 

  9. Dasiopoulou, S., Heinecke, J., Saathoff, C., Strintzis, M.G.: Multimedia reasoning with natural language support. In: IEEE Sixth International Conference on Semantic Computing, pp. 413–420. IEEE (2007). doi:10.1109/ICSC.2007.28

  10. D’Odorico, T., Bennett, B.: Automated reasoning on vague concepts using formal ontologies, with an application to event detection on video data. In: 11th International Symposium on Logical Formalizations of Commonsense Reasoning (COMMONSENSE 2013), Ayia Napa (2013)

    Google Scholar 

  11. Ballan, L., Bertini, M., Del Bimbo, A., Serra, G.: Semantic annotation of soccer videos by visual instance clustering and spatial/temporal reasoning in ontologies. Multimedia Tools Appl. 48, 313–337 (2010). doi:10.1007/s11042-009-0342-4

    Article  Google Scholar 

  12. Sikos, L.F., Powers, D.M.W.: Knowledge-driven video information retrieval with LOD: from semi-structured to structured video metadata. In: Eighth Workshop on Exploiting Semantic Annotations in Information Retrieval (ESAIR 2015), Melbourne (2015). doi:10.1145/2810133.2810141

  13. VidOnt: The Video Ontology. http://vidont.org

  14. Sikos, L.F.: Mastering Structured Data on the Semantic Web: From HTML5 Microdata to Linked Open Data. Apress Media, New York (2015). doi:10.1007/978-1-4842-1049-9

    Book  Google Scholar 

  15. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. J. Web Semant. 3(1), 41–60 (2005). doi:10.1016/j.websem.2005.05.001

    Article  Google Scholar 

  16. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. CRC Press, Boca Raton (2009)

    Google Scholar 

  17. Simou, N., Tzouvaras, V., Avrithis, Y., Stamou, G., Kollias, S.: A visual descriptor ontology for multimedia reasoning. In: 6th International Workshop on Image Analysis for Multimedia Interactive Services, Montreux (2005)

    Google Scholar 

  18. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: An OWL 2 Reasoner. J. Autom. Reasoning 53(3), 245–269 (2014). doi:10.1007/s10817-014-9305-1

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie F. Sikos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sikos, L.F. (2016). A Novel Approach to Multimedia Ontology Engineering for Automated Reasoning over Audiovisual LOD Datasets. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49381-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49381-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49380-9

  • Online ISBN: 978-3-662-49381-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics