Abstract
Multimedia reasoning, which is suitable for, among others, multimedia content analysis and high-level video scene interpretation, relies on the formal and comprehensive conceptualization of the represented knowledge domain. However, most multimedia ontologies are not exhaustive in terms of role definitions, and do not incorporate complex role inclusions and role interdependencies. In fact, most multimedia ontologies do not have a role box at all, and implement only a basic subset of the available logical constructors. Consequently, their application in multimedia reasoning is limited. To address the above issues, VidOnt, the very first multimedia ontology with \( {{\mathcal{S}\mathcal{R}\mathcal{O}\mathcal{I}\mathcal{Q}}^{{({\mathcal{D}})}}} \) expressivity and a DL-safe ruleset has been introduced for next-generation multimedia reasoning. In contrast to the common practice, the formal grounding has been set in one of the most expressive description logics, and the ontology validated with industry-leading reasoners, namely HermiT and FaCT++. This paper also presents best practices for developing multimedia ontologies, based on my ontology engineering approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In the \( {{\mathcal{S}\mathcal{R}\mathcal{O}\mathcal{I}\mathcal{Q}}} \) description logic. Many less expressive DLs do not provide inverse roles, and no other ontology supports the universal role, which has been introduced in \( {{\mathcal{S}\mathcal{R}\mathcal{O}\mathcal{I}\mathcal{Q}}} \).
- 2.
Semantic Web Rule Language.
References
Meghini, C., Sebastiani, F., Straccia, U.: Reasoning about the Form and Content of Multimedia Objects. In: AAAI 1997 Spring Symposium on Intelligent Integration and Use of Text, Image, Video and Audio, pp. 89–94. AAAI Press, Menlo Park (1997)
Simou, N., Athanasiadis, T., Tzouvaras, V., Kollias, S.: Multimedia reasoning with f–SHIN. In: Second International Workshop on Semantic Media Adaptation and Personalization, IEEE (2007). doi:10.1109/SMAP.2007.40
Simou, N., Saathoff, C., Dasiopoulou, S., Spyrou, E., Voisine, N., Tzouvaras, V., Kompatsiaris, I., Avrithis, Y., Staab, S.: An ontology infrastructure for multimedia reasoning. In: Atzori, L., Giusto, D.D., Leonardi, R., Pereira, F. (eds.) VLBV 2005. LNCS, vol. 3893, pp. 51–60. Springer, Heidelberg (2006)
Town, C.: Ontological inference for image and video analysis. Mach. Vis. Appl. 17(2), 94–115 (2006). doi:10.1007/s00138-006-0017-3
Gómez-Romero, J., Patricio, M.A., García, J., Molina, J.M.: Ontology-based context representation and reasoning for object tracking and scene interpretation in video. Expert Syst. Appl. 38, 7494–7510 (2011). doi:10.1016/j.eswa.2010.12.118
Möller, R., Neumann, B.: Ontology-based reasoning techniques for multimedia interpretation and retrieval. In: Semantic Multimedia and Ontologies. Springer, London (2008). doi:10.1007/978-1-84800-076-6_3
Elleuch, N., Zarka, M., Ammar, A.B., Alimi, A.M.: A fuzzy ontology-based framework for reasoning in visual video content analysis and indexing. In: 11th International Workshop on Multimedia Data Mining (MDMKDD 2011), San Diego (2011). doi:10.1145/2237827.2237828
Jaimes, A., Tseng, B.L., Smith, J.R.: Modal keywords, ontologies, and reasoning for video understanding. In: Bakker, E.M., Lew, M.S., Huang, T.S., Sebe, N., Zhou, X.S. (eds.) Image and Video Retrieval. LNCS, vol. 2728, pp. 248–259. Springer, Heidelberg (2003). doi:10.1007/3-540-45113-7_25
Dasiopoulou, S., Heinecke, J., Saathoff, C., Strintzis, M.G.: Multimedia reasoning with natural language support. In: IEEE Sixth International Conference on Semantic Computing, pp. 413–420. IEEE (2007). doi:10.1109/ICSC.2007.28
D’Odorico, T., Bennett, B.: Automated reasoning on vague concepts using formal ontologies, with an application to event detection on video data. In: 11th International Symposium on Logical Formalizations of Commonsense Reasoning (COMMONSENSE 2013), Ayia Napa (2013)
Ballan, L., Bertini, M., Del Bimbo, A., Serra, G.: Semantic annotation of soccer videos by visual instance clustering and spatial/temporal reasoning in ontologies. Multimedia Tools Appl. 48, 313–337 (2010). doi:10.1007/s11042-009-0342-4
Sikos, L.F., Powers, D.M.W.: Knowledge-driven video information retrieval with LOD: from semi-structured to structured video metadata. In: Eighth Workshop on Exploiting Semantic Annotations in Information Retrieval (ESAIR 2015), Melbourne (2015). doi:10.1145/2810133.2810141
VidOnt: The Video Ontology. http://vidont.org
Sikos, L.F.: Mastering Structured Data on the Semantic Web: From HTML5 Microdata to Linked Open Data. Apress Media, New York (2015). doi:10.1007/978-1-4842-1049-9
Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. J. Web Semant. 3(1), 41–60 (2005). doi:10.1016/j.websem.2005.05.001
Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. CRC Press, Boca Raton (2009)
Simou, N., Tzouvaras, V., Avrithis, Y., Stamou, G., Kollias, S.: A visual descriptor ontology for multimedia reasoning. In: 6th International Workshop on Image Analysis for Multimedia Interactive Services, Montreux (2005)
Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: An OWL 2 Reasoner. J. Autom. Reasoning 53(3), 245–269 (2014). doi:10.1007/s10817-014-9305-1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sikos, L.F. (2016). A Novel Approach to Multimedia Ontology Engineering for Automated Reasoning over Audiovisual LOD Datasets. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49381-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-662-49381-6_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49380-9
Online ISBN: 978-3-662-49381-6
eBook Packages: Computer ScienceComputer Science (R0)