[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A PTAS for Scheduling Unrelated Machines of Few Different Types

  • Conference paper
  • First Online:
SOFSEM 2016: Theory and Practice of Computer Science (SOFSEM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9587))

Abstract

Scheduling on Unrelated Machines is a classical optimization problem where n jobs have to be distributed to m machines. Each of the jobs \(j \in \{1, \ldots , n\}\) has on machine \(i \in \{1, \ldots , m\}\) a processing time \(p_{ij} \ge 0\). The goal is to minimize the makespan, i.e. the maximum completion time of the longest-running machine. Unless \(\mathrm {P}= \mathrm {NP}\), this problem does not allow for a polynomial-time approximation algorithm with a ratio better than \(\frac{3}{2}\). A natural scenario is however that many machines are of the same type, like a CPU and GPU cluster: for each of the K machine types, the machines \(i \ne i'\) of the same type k satisfy \(p_{ij} = p_{i'j}\) for all jobs j. For the case where the number K of machine types is constant, this paper presents an approximation scheme, i.e. an algorithm of approximation ratio \(1+\varepsilon \) for \(\varepsilon > 0\), with an improved running time only single exponential in \(\frac{1}{\varepsilon }\).

Research supported by DFG project JA612/14-2, “Entwicklung und Analyse von effizienten polynomiellen Approximationsschemata für Scheduling- und verwandte Optimierungsprobleme”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arad, D., Mordechai, Y., Shachnai, H.: Tighter Bounds for Makespan Minimization on Unrelated Machines (2014). arXiv:1405.2530

  2. Bhaskara, A., Krishnaswamy, R., Talwar, K., Wieder, U.: Minimum makespan scheduling with low rank processing times. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, pp. 937–947. SIAM (2013)

    Google Scholar 

  3. Bleuse, R., Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Scheduling independent tasks on multi-cores with GPU accelerators. Concurr. Comput. 27(6), 1625–1638 (2015)

    Article  Google Scholar 

  4. Bonifaci, V., Wiese, A.: Scheduling Unrelated Machines of Few Different Types (2012). arXiv:1205.0974

  5. Chakrabarty, D., Khanna, S., Li, S.: On \((1,\varepsilon )\)-restricted assignment makespan minimization. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pp. 1087–1101. SIAM (2015)

    Google Scholar 

  6. Chen, L., Ye, D., Zhang, G.: An improved lower bound for rank four scheduling. Oper. Res. Lett. 42(5), 348–350 (2014)

    Article  MathSciNet  Google Scholar 

  7. Fishkin, A.V., Jansen, K., Mastrolilli, M.: Grouping techniques for scheduling problems: simpler and faster. Algorithmica 51(2), 183–199 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gairing, M., Monien, B., Woclaw, A.: A faster combinatorial approximation algorithm for scheduling unrelated parallel machines. Theor. Comput. Sci. 380(1–2), 87–99 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  10. Gehrke, J.C., Jansen, K., Kraft, S.E.J., Schikowski, J.: A PTAS for Scheduling Unrelated Machines of Few Different Types. Technical report, No. 1506, Christian-Albrechts-Universität zu Kiel (2015). ISSN 2192-6247

    Google Scholar 

  11. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. In: Hammer, P.L., Johnson, E.L., Korte, B.H. (eds.) Discrete Optimization II: Proceedings of the Advanced Research Institute on Discrete Optimization and Systems Applications of the Systems Science Panel of NATO and of the Discrete Optimization Symposium. Annals of Discrete Mathematics, vol. 5, pp. 287–326. Elsevier (1979)

    Google Scholar 

  12. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34(1), 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  13. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM J. Comput. 17(3), 539–551 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling nonidentical processors. J. ACM 23(2), 317–327 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. Imreh, C.: Scheduling problems on two sets of identical machines. Computing 70(4), 277–294 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jansen, K., Porkolab, L.: Improved approximation schemes for scheduling unrelated parallel machines. Math. Oper. Res. 26(2), 324–338 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jansen, K., Robenek, C.: Scheduling jobs on identical and uniform processors revisited. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 109–122. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Jansen, K., Mastrolilli, M.: Scheduling unrelated parallel machines: linear rogramming strikes back. Christian-Albrechts-Universität zu Kiel (2010). ISSN: 2192-6247, No. 1004

    Google Scholar 

  19. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 259–271 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Raravi, G., Nélis, V.: A PTAS for assigning sporadic tasks on two-type heterogeneous multiprocessors. In: Proceedings of the 33rd IEEE Real-Time Systems Symposium, RTSS 2012, pp. 117–126. IEEE Computer Society (2012)

    Google Scholar 

  21. Shchepin, E.V., Vakhania, N.: An optimal rounding gives a better approximation for scheduling unrelated machines. Oper. Res. Lett. 33(2), 127–133 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shmoys, D.B., Tardos, E.: An approximation algorithm for the generalized assignment problem. Math. Program. 62, 461–474 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput. 41(5), 1318–1341 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wiese, A., Bonifaci, V., Baruah, S.K.: Partitioned EDF scheduling on a few types of unrelated multiprocessors. Real-Time Syst. 49(2), 219–238 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their comments, especially for the reference to the algorithm by Raravi and Nélis [20]. The bibliography contains information from the DBLP database (www.dblp.org), which is made available under the ODC Attribution License.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan E. J. Kraft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gehrke, J.C., Jansen, K., Kraft, S.E.J., Schikowski, J. (2016). A PTAS for Scheduling Unrelated Machines of Few Different Types. In: Freivalds, R., Engels, G., Catania, B. (eds) SOFSEM 2016: Theory and Practice of Computer Science. SOFSEM 2016. Lecture Notes in Computer Science(), vol 9587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49192-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49192-8_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49191-1

  • Online ISBN: 978-3-662-49192-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics