[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Regular Symmetry Patterns

  • Conference paper
  • First Online:
Verification, Model Checking, and Abstract Interpretation (VMCAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9583))

Abstract

Symmetry reduction is a well-known approach for alleviating the state explosion problem in model checking. Automatically identifying symmetries in concurrent systems, however, is computationally expensive. We propose a symbolic framework for capturing symmetry patterns in parameterised systems (i.e. an infinite family of finite-state systems): two regular word transducers to represent, respectively, parameterised systems and symmetry patterns. The framework subsumes various types of “symmetry relations” ranging from weaker notions (e.g. simulation preorders) to the strongest notion (i.e. isomorphisms). Our framework enjoys two algorithmic properties: (1) symmetry verification: given a transducer, we can automatically check whether it is a symmetry pattern of a given system, and (2) symmetry synthesis: we can automatically generate a symmetry pattern for a given system in the form of a transducer. Furthermore, our symbolic language allows additional constraints that the symmetry patterns need to satisfy to be easily incorporated in the verification/synthesis. We show how these properties can help identify symmetry patterns in examples like dining philosopher protocols, self-stabilising protocols, and prioritised resource-allocator protocol. In some cases (e.g. Gries’s coffee can problem), our technique automatically synthesises a safety-preserving finite approximant, which can then be verified for safety solely using a finite-state model checker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Length-preserving automatic transition systems are instances of automatic structures [8, 9].

  2. 2.

    Note that all occurrences of  \(\#\) are in the end of words.

  3. 3.

    Note that this is for the special case of homomorphisms. Simulation counterexamples are more complicated than case 3 when considering simulations relations that are not total functions.

References

  1. Abdulla, P.A.: Regular model checking. STTT 14(2), 109–118 (2012)

    Article  Google Scholar 

  2. Abdulla, P.A., Chen, Y.-F., Holík, L., Mayr, R., Vojnar, T.: When simulation meets antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J., Saksena, M.: Regular model checking for LTL(MSO). STTT 14(2), 223–241 (2012)

    Article  Google Scholar 

  4. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 35–48. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Arenas, M., Barceló, P., Libkin, L.: Regular languages of nested words: fixed points, automata, and synchronization. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 888–900. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  7. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2–3), 56–59 (2010)

    Google Scholar 

  8. Blumensath, A.: Automatic structures. Master’s thesis, RWTH Aachen (1999)

    Google Scholar 

  9. Blumensath, A., Grädel, E.: Finite presentations of infinite structures: Automata and interpretations. Theor. Comput. Syst. 37(6), 641–674 (2004)

    Article  MATH  Google Scholar 

  10. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, Rome, Italy - January 23–25, 2013, pp. 457–468 (2013)

    Google Scholar 

  11. Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  12. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal logic model checking. Formal Methods Syst. Des. 9(1/2), 77–104 (1996)

    Article  Google Scholar 

  13. Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a hardware design aid. In: Proceedings 1991 IEEE International Conference on Computer Design: VLSI in Computer and Processors, ICCD 1992, Cambridge, MA, USA, October 11–14, 1992, pp. 522–525 (1992)

    Google Scholar 

  14. Donaldson, A.F.: Automatic Techniques for Detecting and Exploiting Symmetry in Model Checking. Ph.D. thesis, University of Glasgow (2007)

    Google Scholar 

  15. Donaldson, A.F., Miller, A.: Automatic symmetry detection for model checking using computational group theory. In: FM, pp. 631–631 (2005)

    Google Scholar 

  16. Donaldson, A.F., Miller, A.: Automatic symmetry detection for promela. J. Autom. Reasoning 41, 251–293 (2008)

    Article  MATH  Google Scholar 

  17. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: Proceedings of the 17th International Conference on Automated Deduction, Pittsburgh, PA, USA, June 17–20, 2000, Automated Deduction - CADE-17, pp. 236–254 (2000)

    Google Scholar 

  18. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL, 85–94, (1995)

    Google Scholar 

  19. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods Syst. Des. 9(1/2), 105–131 (1996)

    Article  Google Scholar 

  20. Gries, D.: The Science of Programming. Springer-Verlag (1981)

    Google Scholar 

  21. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods Syst. Des. 9, 41–75 (1996)

    Article  Google Scholar 

  23. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-stabilizing mutual exclusion. In: PODC, pp. 119–131 (1990)

    Google Scholar 

  24. Jaghoori, M.M., Sirjani, M., Mousavi, M.R., Khamespanah, E., Movaghar, A.: Symmetry and partial order reduction techniques in model checking rebeca. Acta Inf. 47, 33–66 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jaghoori, M.M., Sirjani, M., Mousavi, M.R.R., Movaghar, A.: Efficient symmetry reduction for an actor-based model. In: Chakraborty, G. (ed.) ICDCIT 2005. LNCS, vol. 3816, pp. 494–507. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Lehmann, D., Rabin, M.: On the advantage of free choice: A symmetric and fully distributed solution to the dining philosophers problem (extended abstract). In: Proceedings 8th Annual ACM Symposium on Principles of Programming Languages (POPL 1981), pp. 133–138 (1981)

    Google Scholar 

  27. Lin, A.W.: Accelerating tree-automatic relations. In: FSTTCS, pp. 313–324 (2012)

    Google Scholar 

  28. Lin, A.W., Nguyen, T.K., Rümmer, P., Sun, J.: Regular symmetry patterns (technical report). http://arxiv.org/abs/1510.08506 (cited in 2015)

    Google Scholar 

  29. Sistla, A.P., Gyuris, V., Emerson, E.A.: SMC: a symmetry-based model checker for verification of safety and liveness properties. ACM Trans. Softw. Eng. Method. 9, 133–166 (2000)

    Article  Google Scholar 

  30. Spermann, C., Leuschel, M.: ProB gets nauty: effective symmetry reduction for B and Z models. In: TASE, pp. 15–22 (2008)

    Google Scholar 

  31. Vojnar, T.: Cut-offs and automata in formal verification of infinite-state systems: Habilitation Thesis. Brno University of Technology, Faculty of Information Technology (2007)

    Google Scholar 

  32. Wahl, T., Donaldson, A.F.: Replication and abstraction: Symmetry in automated formal verification. Symmetry 2, 799–847 (2010)

    Article  MathSciNet  Google Scholar 

  33. Zhang, S.J., Sun, J., Sun, C., Liu, Y., Ma, J., Dong, J.S.: Constraint-based automatic symmetry detection. In: ASE, pp. 15–25 (2013)

    Google Scholar 

Download references

Acknowledgment

Lin is supported by Yale-NUS Grants, Rümmer by the Swedish Research Council. We thank Marty Weissman for a fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Rümmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, A.W., Nguyen, T.K., Rümmer, P., Sun, J. (2016). Regular Symmetry Patterns. In: Jobstmann, B., Leino, K. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2016. Lecture Notes in Computer Science(), vol 9583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49122-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49122-5_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49121-8

  • Online ISBN: 978-3-662-49122-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics