[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Controller Synthesis for MDPs and Frequency LTL\(_{\setminus \mathbf{G}\mathbf U}\)

  • Conference paper
  • First Online:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9450))

Included in the following conference series:

Abstract

Quantitative extensions of temporal logics have recently attracted significant attention. In this work, we study frequency LTL (fLTL), an extension of LTL which allows to speak about frequencies of events along an execution. Such an extension is particularly useful for probabilistic systems that often cannot fulfil strict qualitative guarantees on the behaviour. It has been recently shown that controller synthesis for Markov decision processes and fLTL is decidable when all the bounds on frequencies are 1. As a step towards a complete quantitative solution, we show that the problem is decidable for the fragment \({{\text {fLTL}_{\setminus \mathbf{G}\mathbf U}}}\), where \(\mathbf U\) does not occur in the scope of \(\mathbf{G}\) (but still \(\mathbf{F}\) can). Our solution is based on a novel translation of such quantitative formulae into equivalent deterministic automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In order to guarantee that each action is enabled in at most one state, we have a copy of each original action for each state of the automaton.

  2. 2.

    Technically, the projection should be preceded by i to get a run of the automaton, but the acceptance does not depend on any finite prefix of the sequence of states.

  3. 3.

    We use Boolean functions, i.e. classes of propositionally equivalent formulae, to obtain a finite state space. To avoid clutter, when referring to such a Boolean function, we use some formula representing the respective equivalence class. The choice of the representing formula is not relevant since, for all operations we use, the propositional equivalence is a congruence, see [20]. Note that, in particular, \(\mathbf{tt},\mathbf{ff}\in Q\).

  4. 4.

    An acceptance condition of an automaton is defined to hold on a run of the automata product if it holds on the projection of the run to this automaton. We can still write this as a standard acceptance condition. Indeed, for instance, a Büchi condition for the first automaton given by \(F\subseteq Q\) is a Büchi condition on the product given by \(\{(q_1,q_2,\ldots ,q_n)\mid q_1\in F, q_2,\ldots ,q_n\in Q\}\).

References

  1. Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 424–439. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  3. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear temporal logic: complexity and decidability. In: CSL-LICS. ACM (2014)

    Google Scholar 

  4. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with accumulative values In: LICS. IEEE (2011)

    Google Scholar 

  7. Bollig, B., Decker, N., Leucker, M.: Frequency linear-time temporal logic. In: TASE. IEEE, Beijing, July 2012

    Google Scholar 

  8. Bouyer, P., Markey, N., Matteplackel, R.M.: Averaging in LTL. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 266–280. Springer, Heidelberg (2014)

    Google Scholar 

  9. Brázdil, T., Brožek, V., Chatterjee, K., Forejt, V., Kučera, A.: Markov decision processes with multiple long-run average objectives. LMCS 10(4), 1–29 (2014)

    Google Scholar 

  10. Brázdil, T., Chatterjee, K., Forejt, V., Kučera, A.: Trading performance for stability in Markov decision processes. In: LICS. IEEE (2013)

    Google Scholar 

  11. Chatterjee, K., Doyen, L.: Energy and mean-payoff parity markov decision processes. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 206–218. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Chatterjee, K., Gaiser, A., Křetínský, J.: Automata with generalized rabin pairs for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Chatterjee, K., Komárková, Z., Křetínský, J.: Unifying two views on multiple mean-payoff objectives in Markov decision processes. In: LICS (2015)

    Google Scholar 

  14. Clemente, L., Raskin, J.-F.: Multidimensional beyond worst-case and almost-sure problems for mean-payoff objectives. In: LICS (2015, To appear)

    Google Scholar 

  15. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Droste, M., Perevoshchikov, V.: Multi-weighted automata and MSO logic. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 418–430. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Esparza, J., Křetínský, J.: From LTL to deterministic automata: a safraless compositional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 192–208. Springer, Heidelberg (2014)

    Google Scholar 

  18. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model checking of Markov decision processes. LMCS 4(4), 1–21 (2008)

    MathSciNet  Google Scholar 

  19. Forejt, V., Krčál, J.: On frequency LTL in probabilistic systems. In: CONCUR, LIPIcs, vol. 42. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

    Google Scholar 

  20. Forejt, V., Krčál, J., Křetínský, J.: Controller synthesis for MDPS and frequency LTL\(_{\setminus \text{ GU }}\) (2015). CoRR, abs/1509.04116

    Google Scholar 

  21. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer, Heidelberg (1976)

    Book  MATH  Google Scholar 

  22. Kini, D., Viswanathan, M.: Limit deterministic and probabilistic automata for LTL\(_{\setminus \text{ GU }}\). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 628–642. Springer, Heidelberg (2015)

    Google Scholar 

  23. Klein, J., Baier, C.: Experiments with deterministic \(\omega \)-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Komárková, Z., Křetínský, J.: Rabinizer 3: Safraless translation of LTL to small deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 235–241. Springer, Heidelberg (2014)

    Google Scholar 

  25. Křetínský, J., Ledesma-Garza, R.: Rabinizer 2: small deterministic automata for LTL\(\setminus \)GU. In: ATVA (2013)

    Google Scholar 

  26. Křetínský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional Markov decision processes. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 123–139. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  29. Thomas, W.: Languages, Automata, and Logic. Springer, New York (1997)

    Book  Google Scholar 

  30. Tomita, T., Hagihara, S., Yonezaki, N.: A probabilistic temporal logic with frequency operators and its model checking. In: INFINITY (2011)

    Google Scholar 

  31. Tomita, T., Hiura, S., Hagihara, S., Yonezaki, N.: A temporal logic with mean-payoff constraints. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 249–265. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  32. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency: Structure versus Automata. LNCS, vol. 1043. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  33. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: LICS. IEEE (1986)

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center AVACS (SFB/TR 14), by the Czech Science Foundation under grant agreement P202/12/G061, by the EU 7th Framework Programme under grant agreement no. 295261 (MEALS) and 318490 (SENSATION), by the CDZ project 1023 (CAP), by the CAS/SAFEA International Partnership Program for Creative Research Teams, by the EPSRC grant EP/M023656/1, by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) REA Grant No 291734, by the Austrian Science Fund (FWF) S11407-N23 (RiSE/SHiNE), and by the ERC Start Grant (279307: Graph Games). Vojtěch Forejt is also affiliated with FI MU, Brno, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Krčál .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Forejt, V., Krčál, J., Křetínský, J. (2015). Controller Synthesis for MDPs and Frequency LTL\(_{\setminus \mathbf{G}\mathbf U}\) . In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2015. Lecture Notes in Computer Science(), vol 9450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48899-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48899-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48898-0

  • Online ISBN: 978-3-662-48899-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics