Abstract
Quantitative extensions of temporal logics have recently attracted significant attention. In this work, we study frequency LTL (fLTL), an extension of LTL which allows to speak about frequencies of events along an execution. Such an extension is particularly useful for probabilistic systems that often cannot fulfil strict qualitative guarantees on the behaviour. It has been recently shown that controller synthesis for Markov decision processes and fLTL is decidable when all the bounds on frequencies are 1. As a step towards a complete quantitative solution, we show that the problem is decidable for the fragment \({{\text {fLTL}_{\setminus \mathbf{G}\mathbf U}}}\), where \(\mathbf U\) does not occur in the scope of \(\mathbf{G}\) (but still \(\mathbf{F}\) can). Our solution is based on a novel translation of such quantitative formulae into equivalent deterministic automata.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In order to guarantee that each action is enabled in at most one state, we have a copy of each original action for each state of the automaton.
- 2.
Technically, the projection should be preceded by i to get a run of the automaton, but the acceptance does not depend on any finite prefix of the sequence of states.
- 3.
We use Boolean functions, i.e. classes of propositionally equivalent formulae, to obtain a finite state space. To avoid clutter, when referring to such a Boolean function, we use some formula representing the respective equivalence class. The choice of the representing formula is not relevant since, for all operations we use, the propositional equivalence is a congruence, see [20]. Note that, in particular, \(\mathbf{tt},\mathbf{ff}\in Q\).
- 4.
An acceptance condition of an automaton is defined to hold on a run of the automata product if it holds on the projection of the run to this automaton. We can still write this as a standard acceptance condition. Indeed, for instance, a Büchi condition for the first automaton given by \(F\subseteq Q\) is a Büchi condition on the product given by \(\{(q_1,q_2,\ldots ,q_n)\mid q_1\in F, q_2,\ldots ,q_n\in Q\}\).
References
Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 424–439. Springer, Heidelberg (2014)
Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear temporal logic: complexity and decidability. In: CSL-LICS. ACM (2014)
Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)
Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)
Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifications with accumulative values In: LICS. IEEE (2011)
Bollig, B., Decker, N., Leucker, M.: Frequency linear-time temporal logic. In: TASE. IEEE, Beijing, July 2012
Bouyer, P., Markey, N., Matteplackel, R.M.: Averaging in LTL. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 266–280. Springer, Heidelberg (2014)
Brázdil, T., Brožek, V., Chatterjee, K., Forejt, V., Kučera, A.: Markov decision processes with multiple long-run average objectives. LMCS 10(4), 1–29 (2014)
Brázdil, T., Chatterjee, K., Forejt, V., Kučera, A.: Trading performance for stability in Markov decision processes. In: LICS. IEEE (2013)
Chatterjee, K., Doyen, L.: Energy and mean-payoff parity markov decision processes. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 206–218. Springer, Heidelberg (2011)
Chatterjee, K., Gaiser, A., Křetínský, J.: Automata with generalized rabin pairs for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013)
Chatterjee, K., Komárková, Z., Křetínský, J.: Unifying two views on multiple mean-payoff objectives in Markov decision processes. In: LICS (2015)
Clemente, L., Raskin, J.-F.: Multidimensional beyond worst-case and almost-sure problems for mean-payoff objectives. In: LICS (2015, To appear)
Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)
Droste, M., Perevoshchikov, V.: Multi-weighted automata and MSO logic. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 418–430. Springer, Heidelberg (2013)
Esparza, J., Křetínský, J.: From LTL to deterministic automata: a safraless compositional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 192–208. Springer, Heidelberg (2014)
Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model checking of Markov decision processes. LMCS 4(4), 1–21 (2008)
Forejt, V., Krčál, J.: On frequency LTL in probabilistic systems. In: CONCUR, LIPIcs, vol. 42. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)
Forejt, V., Krčál, J., Křetínský, J.: Controller synthesis for MDPS and frequency LTL\(_{\setminus \text{ GU }}\) (2015). CoRR, abs/1509.04116
Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer, Heidelberg (1976)
Kini, D., Viswanathan, M.: Limit deterministic and probabilistic automata for LTL\(_{\setminus \text{ GU }}\). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 628–642. Springer, Heidelberg (2015)
Klein, J., Baier, C.: Experiments with deterministic \(\omega \)-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)
Komárková, Z., Křetínský, J.: Rabinizer 3: Safraless translation of LTL to small deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 235–241. Springer, Heidelberg (2014)
Křetínský, J., Ledesma-Garza, R.: Rabinizer 2: small deterministic automata for LTL\(\setminus \)GU. In: ATVA (2013)
Křetínský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)
Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional Markov decision processes. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 123–139. Springer, Heidelberg (2015)
Thomas, W.: Languages, Automata, and Logic. Springer, New York (1997)
Tomita, T., Hagihara, S., Yonezaki, N.: A probabilistic temporal logic with frequency operators and its model checking. In: INFINITY (2011)
Tomita, T., Hiura, S., Hagihara, S., Yonezaki, N.: A temporal logic with mean-payoff constraints. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 249–265. Springer, Heidelberg (2012)
Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency: Structure versus Automata. LNCS, vol. 1043. Springer, Heidelberg (1996)
Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: LICS. IEEE (1986)
Acknowledgments
This work is partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center AVACS (SFB/TR 14), by the Czech Science Foundation under grant agreement P202/12/G061, by the EU 7th Framework Programme under grant agreement no. 295261 (MEALS) and 318490 (SENSATION), by the CDZ project 1023 (CAP), by the CAS/SAFEA International Partnership Program for Creative Research Teams, by the EPSRC grant EP/M023656/1, by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) REA Grant No 291734, by the Austrian Science Fund (FWF) S11407-N23 (RiSE/SHiNE), and by the ERC Start Grant (279307: Graph Games). Vojtěch Forejt is also affiliated with FI MU, Brno, Czech Republic.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Forejt, V., Krčál, J., Křetínský, J. (2015). Controller Synthesis for MDPs and Frequency LTL\(_{\setminus \mathbf{G}\mathbf U}\) . In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2015. Lecture Notes in Computer Science(), vol 9450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48899-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-662-48899-7_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48898-0
Online ISBN: 978-3-662-48899-7
eBook Packages: Computer ScienceComputer Science (R0)