Abstract
Following Fitting’s method, a translation of a Lewis-style counterpart theory in the language L(NI) into the language L(NId) is provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lewis, D.: Counterpart theory and quantified modal logic. Journal of Philosophy 65, 113–126 (1968)
Fitting, M., Mendelsohn, R.L.: First Order Modal Logic. Kluwer, Dordrecht (1999)
Fitting, M.: First-order intensional logic. Annals of Pure and Applied Logic 127, 191–193 (2004)
Fitting, M.: Intensional Logic. The Stanford Encyclopedia of Philosophy (Spring 2014 Edition) (2011)
Kripke, S.: Semantical Considerations on Modal Logic. Acta Philosophica Fennica 16, 83–94 (1963)
Kripke, S.: Naming and Necessity. Harvard University Press, Cambridge (1980)
Priest, G.: An Introduction to Non-Classical Logic. Cambridge University Press, Cambridge (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, CH. (2015). Translating a Counterpart Theory into a Quantified Modal Language with Descriptors. In: van der Hoek, W., Holliday, W., Wang, Wf. (eds) Logic, Rationality, and Interaction. LORI 2015. Lecture Notes in Computer Science(), vol 9394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48561-3_39
Download citation
DOI: https://doi.org/10.1007/978-3-662-48561-3_39
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48560-6
Online ISBN: 978-3-662-48561-3
eBook Packages: Computer ScienceComputer Science (R0)