[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Multivariate Approach for Weighted FPT Algorithms

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

  • 2356 Accesses

Abstract

We introduce a multivariate approach for solving weighted parameterized problems. Building on the flexible use of certain parameters, our approach defines a new general framework for applying the classic bounded search trees technique. In our model, given an instance of size n of a minimization/maximization problem, and a parameter W ≥ 1, we seek a solution of weight at most/at least W. We demonstrate the wide applicability of our approach by solving the weighted variants of Vertex Cover, 3-Hitting Set, Edge Dominating Set and Max Internal Out-Branching. While the best known algorithms for these problems admit running times of the form a W n O(1), for some constant a > 1, our approach yields running times of the form b s n O(1), for some constant b ≤ a, where s ≤ W is the minimum size of a solution of weight at most (at least) W. If no such solution exists, s =  min {W,m}, where m is the maximum size of a solution. Clearly, s can be substantially smaller than W. Moreover, we give an example for a problem whose polynomial-time solvability crucially relies on our flexible (in lieu of a strict) use of parameters.

We further show, among other results, that Weighted Vertex Cover and Weighted Edge Dominating Set are solvable in times 1.443t n O(1) and 3t n O(1), respectively, where t ≤ s is the minimum size of a solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Yuster, R., Zwick, U.: Color coding. J. ACM 42(4), 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Binkele-Raible, D., Fernau, H.: Enumerate and measure: Improving parameter budget management. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 38–49. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40-42), 3736–3756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chlebìk, M., Chlebìovà, J.: Crown reductions for the minimum weighted vertex cover problem. Discrete Appl. Math. 156(3), 292–312 (2008)

    Google Scholar 

  7. Cygan, M.: Deterministic parameterized connected vertex cover. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 95–106. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum bisection is fixed parameter tractable. In: STOC, pp. 323–332 (2014)

    Google Scholar 

  9. Daligault, J.: Combinatorial techniques for parameterized algorithms and kernels, with ppplications to multicut. PhD thesis, Universite Montpellier, France (2011)

    Google Scholar 

  10. Demaine, E.D., Hajiaghayi, M., Marx, D.: Open problems from Dagstuhl Seminar 09511 (2010). http://drops.dagstuhl.de/opus/volltexte/2010/2499/pdf/09511.SWM.Paper.2499.pdf

  11. Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity. Springer (2013)

    Google Scholar 

  12. Fernau, H.: Parameterized algorithms for d-hitting set: the weighted case. Theor. Comput. Sci. 411(16-18), 1698–1713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, F.V., Gaspers, S., Saurabh, S.: Branching and treewidth based exact algorithms. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 16–25. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining branching and treewidth. Algorithmica 54(2), 181–207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact agorithms. In: SODA, pp. 142–151 (2014)

    Google Scholar 

  16. Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding with applications to signaling pathway detection. Algorithmica 52(2), 114–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Issac, D., Jaiswal, R.: An O*(1.0821n)-time algorithm for computing maximum independent set in graphs with bounded degree 3. CoRR abs/1308.1351 (2013)

    Google Scholar 

  18. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited – upper and lower bounds for a refined parameter. Theory Comput. Syst. 53(2), 263–299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Knauer, M., Spoerhase, J.: Better approximation algorithms for the maximum internal spanning tree problem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 459–470. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for weighted vertex cover. J. Algorithms 47(2), 63–77 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Salamon, G.: Approximation algorithms for the maximum internal spanning tree problem. Theor. Comput. Sci. 410(50), 5273–5284 (2009)

    Article  MATH  Google Scholar 

  22. Shachnai, H., Zehavi, M.: A multivariate framework for weighted FPT algorithms. CoRR abs/1407.2033 (2014)

    Google Scholar 

  23. Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based approach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797. Springer, Heidelberg (2014)

    Google Scholar 

  24. Sharan, R., Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V.: QNet: a tool for querying protein interaction networks. J. Comput. Biol. 15(7), 913–925 (2008)

    Article  MathSciNet  Google Scholar 

  25. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and related problems. Ph.D. thesis Linköpings universitet, Sweden (2007)

    Google Scholar 

  26. Xiao, M., Kloks, T., Poon, S.H.: New parameterized algorithms for the edge dominating set problem. Theor. Comput. Sci. 511, 147–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xiao, M., Nagamochi, H.: Parameterized edge dominating set in graphs with degree bounded by 3. Theor. Comput. Sci. 508, 2–15 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zehavi, M.: Algorithms for k-internal out-branching. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 361–373. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  29. Zehavi, M.: Mixing color coding-related techniniques. In: ESA (2015, to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadas Shachnai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shachnai, H., Zehavi, M. (2015). A Multivariate Approach for Weighted FPT Algorithms. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_80

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics