[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improved Approximation Algorithms for Weighted 2-Path Partitions

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

  • 2393 Accesses

Abstract

We investigate two NP-complete vertex partition problems on edge weighted complete graphs with 3k vertices. The first problem asks to partition the graph into k vertex disjoint paths of length 2 (referred to as 2-paths) such that the total weight of the paths is maximized. We present a cubic time approximation algorithm that computes a 2-path partition whose total weight is at least .5833 of the weight of an optimal partition; improving upon the (.5265 − ε)-approximation algorithm of [26]. Restricting the input graph to have edge weights in {0, 1}, we present a .75 approximation algorithm improving upon the .55-approximation algorithm of [16].

Combining this algorithm with a previously known approximation algorithm for the 3-Set Packing problem, we obtain a .6-approximation algorithm for the problem of partitioning a {0, 1}-edge-weighted graph into k vertex disjoint triangles of maximum total weight. The best known approximation algorithm for general weights achieves an approximation ratio of .5257 [4].

This work is supported by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-09-2-0053, The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arkin, E., Hassin, R.: On local search for weighted k-set packing. Math. Operations Research 23(3), 640–648 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babenko, M., Gusakov, A.: New exact and approximation algorithms for the star packing problem in undirected graphs. In: STACS, pp. 519–530 (2011)

    Google Scholar 

  3. Bar-Noy, A., Basu, P., Baumer, B., Rabanca, G.: Star search: Effective subgroups in collaborative social networks (unpublished)

    Google Scholar 

  4. Chen, Z.-Z., Tanahashi, R., Wang, L.: An improved randomized approximation algorithm for maximum triangle packing. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 97–108. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Chen, Z.Z., Tanahashi, R., Wang, L.: An improved randomized approximation algorithm for maximum triangle packing. Discrete Applied Mathematics 157(7), 1640 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z.Z., Tanahashi, R., Wang, L.: Erratum to, An improved randomized approximation algorithm for maximum triangle packing. Discrete Appl. Math. 157 (2009); Discrete Applied Mathematics 158(9), 1045–1047 (2010)

    Google Scholar 

  7. Chlebìk, M., Chlebìková, J.: Approximation hardness fo2653r small occurrence instances of NP-hard problems. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) ISAAC. LNCS, vol. 2653, pp. 152–164. Springer, Heidelberg (2003)

    Google Scholar 

  8. Gabow, H.: An efficient implementation of Edmonds’ algorithm for maximum matching on graphs. J. ACM 23(2), 221–234 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gajewar, A., Sarma, A.S.: Multi-skill collaborative teams based on densest subgraphs. In: SDM, pp. 165–176. SIAM/Omnipress (2012)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  11. Guruswami, V., Pandu Rangan, C., Chang, M.S., Chang, G.J., Wong, C.K.: The vertex-disjoint triangles problem. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 26–37. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Halldórsson, M.: Approximating discrete collections via local improvements. In: SODA, pp. 160–169 (1995)

    Google Scholar 

  13. Hassin, R., Rubinstein, S.: An approximation algorithm for maximum packing of 3-edge paths. Information Processing Letters 63, 63–67 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle packing. Discrete Applied Math. 154(6), 971–979 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hassin, R., Rubinstein, S.: Erratum to “An approximation algorithm for maximum triangle packing”. Discrete Applied Math. 154, 971–979 (2006); Discrete Applied Math. 154(18), 2620 (2006)

    Google Scholar 

  16. Hassin, R., Schneider, O.: A local search algorithm for binary maximum 2-path partitioning. Discrete Optimization 10(4), 333–360 (2013)

    Article  MathSciNet  Google Scholar 

  17. Hell, P., Kirkpatrick, D.C.: Packings by complete bipartite graphs. SIAM J. Algebraic Discrete Methods 7(2), 199–209 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an sdr, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Math. 2(1), 68–72 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Information Processing Letters 37(1), 27–35 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kargar, M., An, A.: Discovering top-k teams of experts with/without a leader in social networks. In: CIKM, pp. 985–994 (2011)

    Google Scholar 

  21. Li, C.T., Shan, M.K.: Team formation for generalized tasks in expertise social networks. In: SOCIALCOM, pp. 9–16 (2010)

    Google Scholar 

  22. Lonc, Z.: On the complexity of some edge-partition problems for graphs. Discrete Applied Mathematics 70(2), 177–183 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Manic, G., Wakabayashi, Y.: Packing triangles in low degree graphs and indifference graphs. Discrete Math. 308(8), 1455–1471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Prieto, E., Sloper, C.: Looking at the stars. Theoretical Computer Science 351(3), 437–445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rangapuram, S., Bühler, T., Hein, M.: Towards realistic team formation in social networks based on densest subgraphs. In: WWW, pp. 1077–1088 (2013)

    Google Scholar 

  26. Tanahashi, R., Chen, Z.: A deterministic approximation algorithm for maximum 2-path packing. IEICE Tr. Inform. & Syst. E93-D(2), 241–249 (2010)

    Google Scholar 

  27. van Zuylen, A.: Multiplying pessimistic estimators: deterministic approximation of max TSP and maximum triangle packing. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 60–69. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bar-Noy, A., Peleg, D., Rabanca, G., Vigan, I. (2015). Improved Approximation Algorithms for Weighted 2-Path Partitions. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_79

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics