[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Lasserre Lower Bound for the Min-Sum Single Machine Scheduling Problem

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

Abstract

The Min-sum single machine scheduling problem (denoted 1|| ∑ f j ) generalizes a large number of sequencing problems. The first constant approximation guarantees have been obtained only recently and are based on natural time-indexed LP relaxations strengthened with the so called Knapsack-Cover inequalities (see Bansal and Pruhs, Cheung and Shmoys and the recent (4 + ε)-approximation by Mestre and Verschae). These relaxations have an integrality gap of 2, since the Min-knapsack problem is a special case. No APX-hardness result is known and it is still conceivable that there exists a PTAS. Interestingly, the Lasserre hierarchy relaxation, when the objective function is incorporated as a constraint, reduces the integrality gap for the Min-knapsack problem to 1 + ε.

In this paper we study the complexity of the Min-sum single machine scheduling problem under algorithms from the Lasserre hierarchy. We prove the first lower bound for this model by showing that the integrality gap is unbounded at level \(\Omega(\sqrt{n})\) even for a variant of the problem that is solvable in O(n logn) time, namely Min-number of tardy jobs. We consider a natural formulation that incorporates the objective function as a constraint and prove the result by partially diagonalizing the matrix associated with the relaxation and exploiting this characterization.

Supported by the Swiss National Science Foundation project 200020-144491/1 “Approximation Algorithms for Machine Scheduling Through Theory and Experiments”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bansal, N., Pruhs, K.: The geometry of scheduling. In: FOCS, pp. 407–414 (2010)

    Google Scholar 

  2. Barak, B., Chan, S.O., Kothari, P.: Sum of squares lower bounds from pairwise independence. In: STOC (2015)

    Google Scholar 

  3. Bhaskara, A., Charikar, M., Vijayaraghavan, A., Guruswami, V., Zhou, Y.: Polynomial integrality gaps for strong sdp relaxations of densest k-subgraph. In: SODA, pp. 388–405 (2012)

    Google Scholar 

  4. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: SODA, pp. 106–115 (2000)

    Google Scholar 

  5. Cheung, M., Shmoys, D.B.: A primal-dual approximation algorithm for min-sum single-machine scheduling problems. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 135–146. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Handbook on Semidefinite, Conic and Polynomial Optimization. Springer (to appear)

    Google Scholar 

  7. Fawzi, H., Saunderson, J., Parrilo, P.: Sparse sum-of-squares certificates on finite abelian groups. CoRR, abs/1503.01207 (2015)

    Google Scholar 

  8. Grigoriev, D.: Complexity of positivstellensatz proofs for the knapsack. Computational Complexity 10(2), 139–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theoretical Computer Science 259(1-2), 613–622 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karlin, A.R., Mathieu, C., Nguyen, C.T.: Integrality gaps of linear and semi-definite programming relaxations for knapsack. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 301–314. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a symposium on the Complexity of Computer Computations, March 20-22, pp. 85–103. Thomas J. Watson Research Center, Yorktown Heights (1972)

    Chapter  Google Scholar 

  12. Kurpisz, A., Leppänen, S., Mastrolilli, M.: On the hardest problem formulations for the 0/1 Lasserre hierarchy. In: Halldórsson, M M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 872–885. Springer, Heidelberg (2015)

    Google Scholar 

  13. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0-1 programming. Mathematics of Operations Research 28(3), 470–496 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meka, R., Potechin, A., Wigderson, A.: Sum-of-squares lower bounds for planted clique. CoRR, abs/1503.06447. In: STOC 2015 (2015) (to appear)

    Google Scholar 

  16. Mestre, J., Verschae, J.: A 4-approximation for scheduling on a single machine with general cost function. CoRR, abs/1403.0298 (2014)

    Google Scholar 

  17. Moore, M.J.: An n job, one machine sequencing algorithm for minimizing the number of late jobs. Management Science 15, 102–109 (1968)

    Article  MATH  Google Scholar 

  18. O’Donnell, R., Zhou, Y.: Approximability and proof complexity. In: Khanna, S. (ed.) SODA, pp. 1537–1556. SIAM (2013)

    Google Scholar 

  19. Parrilo, P.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology (2000)

    Google Scholar 

  20. Rothvoß, T.: The lasserre hierarchy in approximation algorithms. Lecture Notes for the MAPSP 2013 - Tutorial (June 2013)

    Google Scholar 

  21. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-csps. In: FOCS, pp. 593–602 (2008)

    Google Scholar 

  22. Shor, N.: Class of global minimum bounds of polynomial functions. Cybernetics 23(6), 731–734 (1987)

    Article  MATH  Google Scholar 

  23. Tulsiani, M.: Csp gaps and reductions in the Lasserre hierarchy. In: STOC, pp. 303–312 (2009)

    Google Scholar 

  24. Wolsey, L.A.: Facets for a linear inequality in 0–1 variables. Mathematical Programming 8, 168–175 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Kurpisz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurpisz, A., Leppänen, S., Mastrolilli, M. (2015). A Lasserre Lower Bound for the Min-Sum Single Machine Scheduling Problem. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_71

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics